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1 Introduction

In the real world, it is often the case that a wide range of scales is needed to characterize
physical properties. Actually, multi-scale phenomena seem to be ubiquitous in nature. A
paradigmatic illustration of such situation are fractals which are complex mathematical
objects that have no minimal natural length scale. The relevance of fractals to physics
and many other fields was pointed out by Mandelbrot [1] who demonstrated the richness
of fractal geometry and stimulated many theoretical, numerical and experimental studies.
Actually, in many situations in physics as well as in some applied sciences, one is faced
to the problem of characterizing very irregular functions [1–20]. The examples range from
plots of various kinds of random walks, e.g., Brownian signals [21, 22], to financial time-
series [19, 20, 23], to geologic shapes [1, 16], to medical time-series [9, 13, 14] , to interface
developing in far from equilibrium growth processes [6, 10, 17], to turbulent velocity signals
[15] and to DNA “walks” coding nucleotide sequences [24–26]. These functions can be
qualified as fractal functions [1, 22, 27, 28] whenever their graphs are fractal sets in R2 (in
this introduction we will only consider functions from R to R). They are commonly called
self-affine functions since their graphs are self-affine sets which are similar to themselves
when transformed by anisotropic dilations, i.e., when shrinking along the x-axis by a factor
λ followed by a rescaling of the increments of the function by a different factor λ−H . This
can be stated mathematically in the following way: if f(x) is a self-affine function then,
∀x0 ∈ R, ∃H ∈ R such that for any λ > 0, one has

f(x0 + λx)− f(x0) ' λH (f(x0 + x)− f(x0)) . (1)

If f is a stochastic process, this identity holds in law for fixed λ and x0. The exponent
H is called the roughness or Hurst exponent [1, 5, 10]. Let us note that if H < 1, then
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f is not differentiable and the smaller the exponent H, the more singular f . Thus the
Hurst exponent provides indication of how globally irregular the function f is. Indeed H is
supposed to be related to the fractal dimension DF = 2−H of the graph of f [1, 5, 10, 22].

In various contexts, several methods have been used to estimate the Hurst exponent.
For instance, for the growth of rough surfaces [5, 6, 10, 17, 18], the average height difference
between points separated by a distance l has been considered to scale as:

< |f(x+ l)− f(x)| >∼ lH . (2)

Alternatively, the root-mean square (r.m.s.) of the height fluctuations over a distance l is
a quantitative measure of the width or thickness of the rough interface [5, 6, 10, 17, 18]:

w(l) =
[

< f 2 >l − < f >2
l

]1/2 ∼ lH . (3)

Note that in the pioneering analysis of DNA sequences [24, 25], the r.m.s. fluctuations about
the average displacement of the DNA walk has been mainly used to detect the presence of
long-range correlations (H 6= 1/2). A more classical method consists in investigating the
scaling behavior of the power spectrum as a function of the wavevector k [1–20]:

S(k) ∼ k−(2H+1) . (4)

But some care is required when using these methods, since they may lead to conflicting
estimates of the Hurst exponent [29, 30]. Limited resolution as well as finite-size effects are
well known to introduce biases in the estimate of H. Moreover, on a more fundamental
ground, these methods are not adapted when the fractal function under consideration is
not an homogeneous fractal function with a constant roughness associated to a unique
exponent H [31, 32].

Fractal functions can possess multi-affine properties in the sense that their roughness
(or regularity) may fluctuate from point to point [31–36]. To describe these multifractal

functions, one thus needs to change slightly the definition of the Hurst regularity of f so
that it becomes a local quantity [31, 32]:

|f(x+ l)− f(x)| ∼ lh(x) . (5)

This “local Hurst exponent” h(x) is generally call the Hölder exponent of f at the point
x. A more rigourous definition of the Hölder exponent, as the strength of the singularity
of a function f at the point x0, is given by the largest exponent such that there exists a
polynomial Pn(x − x0) of order n < h(x0) and a constant C > 0, so that for any point x
in the neighborhood of x0, one has [37–42]:

|f(x)− Pn(x− x0)| ≤ C|x− x0|h . (6)

If f is n times continuously differentiable at the point x0, then one can use for the polyno-
mial Pn(x− x0), the order-n Taylor series of f at x0 and thus prove that h(x0) > n. Thus
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h(x0) measures how irregular the function f is at the point x0. The higher the exponent
h(x0), the more regular the function f .

The aim of a quantitative theory of multi-affine functions is to provide mathematical
concepts and numerical tools for the description of the fluctuations of regularity of these ob-
jects based on some limited amount of information. In the early eighties, a phemomenologi-
cal approach to the characterization of fractal objects has been proposed and advanced: the
multifractal formalism [43–51]. In its original form, this approach was essentially adapted
to describe statistically the scaling properties of singular measures [45, 46, 51]. Notable ex-
amples include the invariant probability distribution on a strange attractor [45, 46, 51] , the
distribution of voltage drops across a random resistor network [2, 5, 11], the distribution
of growth probabilities on the boundary of a diffusion-limited aggregate [5, 6, 52] and the
spatial distribution of dissipative regions in a turbulent flow [15, 48, 53, 54]. This formalism
relies upon the determination of the so-called f(α) singularity spectrum [45], which charac-
terizes the relative contribution of each singularity of the measure: let Sα be the subset of
points x where the measure of an ε-box Bx(ε), centered at x, scales like µ(Bx(ε)) ∼ εα in the
limit ε→ 0+, then, by definition, f(α) is the Hausdorff dimension of Sα: f(α) = dimH(Sα).
Actually, there exists a deep analogy that links the multifractal formalism with that of
statistical thermodynamics [55–57]. This analogy provides a natural connection between
the f(α) spectrum and a directly observable spectrum τ(q) defined from the power-law
behavior, in the limit ε→ 0+, of the partition function [45]:

Zq(ε) =
∑

i

µ (Bi(ε))
q ∼ ετ(q), (7)

where the sum is taken over a partition of the support of the singular measure into boxes
of size ε. The variables q and τ(q) play the same role as the inverse of temperature and the
free energy in thermodynamics, while the Legendre transform

f(α) = min
q

(qα− τ(q)) (8)

indicates that instead of energy and entropy, we have α and f(α) as the thermodynamical
variables conjugate to q and τ(q) [36, 45–47, 50]. Let us mention that the so-called gener-
alized fractal dimensions Dq [49, 58] are nothing else than Dq = τ(q)/(q− 1). Most of the
rigourous mathematical results concerning the multifractal formalism have been obtained
in the context of dynamical system theory [46, 51] and of modelling of random cascades
in fully developed turbulence [53, 59, 60]. It has been developed into a powerful technique
(e.g. box-counting algorithms, fixed-size and fixed-mass correlation algorithms) [49, 61–66]
accessible also to experimentalists. Successful applications have been reported in various
fields [8, 11, 13, 15] and the pertinence of the multifractal approach seems, nowadays, to be
well admitted in the scientific community at large.

There have been several attempts to extend the concept of multifractal to singular func-
tions [33, 34]. In the context of fully developed turbulence [15], the intermittent character
of turbulent velocity signals was investigated by calculating the moments of the probability
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density function (pdf) of (longitudinal) velocity increments δvl(x) = v(x + l)− v(x), over
inertial separation [15, 33]:

Sp(l) =< |δvl|p > ∼ lζp . (9)

By Legendre transforming the scaling exponents ζp of these structure functions (SF) of
order p [67], one aims to estimate the Hausdorff dimension D(h) of the subset of R where
velocity increments behave as δvl ∼ lh [33]:

D(h) = min
p

(ph− ζp + 1). (10)

In a more general context, D(h) can be defined as the spectrum of Hölder exponents for
the singular signal under study, in full analogy with the f(α) singularity spectrum (8) for
singular measures. However, as discussed in the next section, there are some fundamental
limitations to the structure function approach which intrinsically fails to fully characterize
the D(h) singularity spectrum [68].

Our purpose here, is to report on an alternative strategy that we have proposed and
which is likely to provide a unified thermodynamical description of multifractal distribu-
tions including measures and functions [31, 32, 35, 36, 42]. This approach relies on the use
of a mathematical tool introduced in signal analysis: the wavelet transform [69–81]. The
wavelet transform has been proved to be very efficient to detect singularities [37–42, 77–80].
In that respect, it is a well adapted technique to study fractal objects [77, 82–85]. Since
a wavelet can be seen as an oscillating variant of a box (i.e., a “square” function), we
will show, as a first step, that one can generalize the multifractal formalism by defining
new partition functions in terms of wavelet coefficients [31, 32, 35, 36, 42]. In particular, by
choosing a wavelet which is orthogonal to polynomial behavior up to some order N , one can
make the wavelet transform blind to regular behavior, remedying in this way for one of the
main failures of the classical approaches (e.g., the box-counting method in the case of mea-
sures and the struture function method in the case of functions). The other fundamental
advantage of using wavelets is that the skeleton defined by the wavelet transform modulus

maxima [40, 41] provides an adaptative space-scale partition of the fractal distribution un-
der study, from which one can extract the D(h) singularity spectrum [31, 32, 35, 36, 42]. As
a second step, we will demonstrate that one can go even deeper in the multifractal analysis
by studying correlation functions in both space and scales [86, 87]. Actually, in the arbores-
cent structure of the wavelet transform skeleton, is somehow uncoded the multiplicative
cascade process that underlies the multifractal properties of the considered function. To
illustrate our purpose, we will report on the most significant results obtained when ap-
plying our concepts and methodology to three different experimental situations, namely
the statistical analysis of DNA sequences, of high resolution satellite images of the cloud
structure and of stock market data.
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2 The wavelet transform modulus maxima method for the

multifractal analysis of 1D signals

The continuous wavelet transform (WT) is a mathematical technique introduced in signal
analysis in the early eighties [88–90]. Since then, it has been the subject of considerable
theoretical developments and practical applications in a wide variety of fields [69–81]. The
WT has been early recognized as a mathematical microscope that is well adapted to re-
veal the hierarchy that governs the spatial distribution of the singularities of multifractal
measures [83–85]. What makes the WT of fundamental use in the present study is that
its singularity scanning ability equally applies to singular functions than to singular mea-
sures [31, 32, 35–42, 77–80, 82].

2.1 The continuous wavelet transform

The WT is a space-scale analysis which consists in expanding signals in terms of wavelets
which are constructed from a single function, the analyzing wavelet ψ, by means of trans-
lations and dilations. The WT of a real-valued function f is defined as [88–90]:

Tψ[f ](x0, a) =
1

a

∫ +∞

−∞

f(x)ψ(
x− x0

a
)dx , (11)

where x0 is the space parameter and a (> 0) the scale parameter. The analyzing wavelet ψ
is generally chosen to be well localized in both space and frequency. Usually ψ is required
to be of zero mean for the WT to be invertible. But for the particular purpose of singularity
tracking that is of interest here, we will further require ψ to be orthogonal to low-order
polynomials [31, 32, 35–42]:

∫ +∞

−∞

xmψ(x)dx , ∀m , 0 ≤ m < nψ . (12)

As originally pointed out by Mallat and collaborators [40, 41], for the specific purpose
of analyzing the regularity of a function, one can get rid of the redundancy of the WT by
concentrating on the WT skeleton defined by its modulus maxima only. These maxima are
defined, at each scale a, as the local maxima of |Tψ[f ](x, a)| considered as a function of x
(Fig. 1c). As illustrated in Fig. 1d, these WTMM are disposed on connected curves in the
space-scale (or time-scale) half-plane, called maxima lines. Let us define L(a0) as the set
of all the maxima lines that exist at the scale a0 and which contain maxima at any scale
a ≤ a0. An important feature of these maxima lines, when analyzing singular functions, is
that there is at least one maxima line pointing towards each singularity (Fig. 1d) [32, 40–
42] .

2.2 Scanning singularities with the wavelet transform modulus maxima

As introduced in section 1, the strength of a singularity of a function is quantified by
the Hölder exponent (6). This definition of the singularity strength naturally leads to a
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Fig. 1. How to estimate the Hölder exponent from the behavior of the WT modulus along the
maxima lines. (a) Graph of the function f(x) = −| x−x0

1024
|0.6 + 1

2
exp(− 1

2
(x−x1

100
)2), which displays a singularity S

of Hölder exponent h = 0.6 located at x0 = −512 and a smooth localized behavior G at x1 = 512. (b) The WT of
f(x) computed using the first-order derivative of the Gaussian function g(1) (20) as coded according to the natural
order of the light spectrum from black (|Tψ| = 0) to red (maxb,a |Tψ|). (c) Horizontal section of Tψ[f ](b, a) at the
scale a = a0; the symbols (•) represent the modulus maxima. (d) Maxima lines of the WT in the (b, a) half-plane
as computed when using the first-order ( ) or the second-order ( ) derivative of the gaussian function.
(e) Local measurement of the scaling exponent along the maxima lines when using g(1) (nψ = 1): h(x0) = 0.6,
h(x1) = nψ = 1; the slope of the curve log2 |Tψf | vs log2 a provides an estimate of the scaling exponent. (f) Same
computation as in (e) but when using a second-order analyzing wavelet g(2) (nψ = 2): h(x0) = 0.6, h(x1) = nψ = 2.
The results in (e) and in (f) are therefore in good agreement with the theoritical predictions given by (14) and (15).
Let us remark that the number of maxima lines that point to a given singularity is nψ + 1.
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generalization of the so-called f(α) singularity spectrum (8) introduced for fractal measures
in Refs. [45, 46, 51]. As originally defined by Parisi and Frisch [33], we will denote D(h) the
Hausdorff dimension of the set where the Hölder exponent is equal to h [31, 32, 36]:

D(h) = dimH{x , h(x) = h} , (13)

where h can take, a priori, positive as well as negative real values (e.g., the Dirac distri-
bution δ(x) corresponds to the Hölder exponent h(0) = −1).

The main interest in using the WT for analyzing the regularity of a function lies in
its ability to be blind to polynomial behavior by an appropriate choice of the analyzing
wavelet ψ. Indeed, let us assume that according to (6), f has, at the point x0, a local scaling
(Hölder) exponent h(x0); then, assuming that the singularity is not oscillating [40, 91, 92],
one can easily prove that the local behavior of f is mirrored by the WT which locally
behaves like [37, 39–42, 82, 93] :

Tψ[f ](x0, a) ∼ ah(x0) , a→ 0+ , (14)

provided nψ > h(x0), where nψ is the number of vanishing moments of ψ (12). Therefore
one can extract the exponent h(x0) as the slope of a log-log plot of the WT amplitude
versus the scale a. On the contrary, if one chooses nψ < h(x0), the WT still behaves as a
power-law but with a scaling exponent which is nψ :

Tψ[f ](x0, a) ∼ anψ , a→ 0+ . (15)

Thus, around a given point x0, the faster the WT decreases when the scale goes to zero,
the more regular f is around that point. In particular, if f ∈ C∞ at x0 (h(x0) = +∞),
then the WT scaling exponent is given by nψ, i.e. a value which is dependent on the
shape of the analyzing wavelet. According to this observation, one can hope to detect the
points where f is smooth by just checking the scaling behavior of the WT when increasing
the order nψ of the analyzing wavelet [32, 35, 36, 42]. Let us also remark that if h(x0) is
negative, then the WT no longer decreases but instead increases when the scale a goes to
zero; this remark has been of fundamental use in Ref. [94] for detecting vorticity filaments
in turbulent pressure signals.

A very important point (at least for practical purpose) raised by Mallat and Hwang [41]
is that the local scaling exponent h(x0) can be equally estimated by looking at the value
of the WT modulus along a maxima line converging towards the point x0. Indeed one can
prove that both (14) and (15) still hold when following a maxima line from large down
to small scales [41, 42]. This is illustrated in Fig. 1 for the particular case of an isolated
singularity “interacting” with a localized smooth structure. The situation is somewhat
more intricate when investigating fractal functions. Indeed the characteristic feature of
these singular functions is the existence of a hierarchical distribution of singularities [31,
32, 35, 36, 42, 82]. Locally, the Hölder exponent h(x0) is governed by the singularities which
accumulate at x0. This results in unavoidable oscillations around the expected power-law
behavior of the WT amplitude [31, 32, 36, 42, 95]. Therefore the exact determination of h
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from log-log plots on a finite range of scales is somewhat uncertain [96–98]. Of course, there
have been many attempts to circumvent these difficulties [31, 97]. Nevertheless there exist
fundamental limitations (which are not intrinsic to the WT technique) to the estimate
of Hölder exponents of fractal functions. Consequently, the determination of statistical
quantities like the D(h) singularity spectrum, requires a method which is more feasible and
more appropriate than a systematic investigation of the local scaling behavior of the WT.
This is the purpose of the recently developed waveled-based multifractal formalism [32, 35,
36, 42] that we will explicitely use in section 3 to analyze the statistical scaling properties
of DNA walks.

2.3 A wavelet-based multifractal formalism : the wavelet transform modulus

maxima method

A natural way of performing a multifractal analysis of fractal functions consists in gen-
eralizing the “classical” multifractal formalism [43–51] using wavelets instead of boxes.
By taking advantage of the freedom in the choice of the “generalized oscillating boxes”
that are the wavelets, one can hope to get rid of possible smooth behavior that could
mask singularities or perturb the estimation of their strength h. But the major difficulty
with respect to box-counting techniques [49, 61, 62, 64, 65] for singular measures, consists
in defining a covering of the support of the singular part of the function with our set of
wavelets of different sizes. A simple method would rely on the definition of the following
partition function in terms of WT coefficients [82] :

Z(q, a) =

∫

|Tψ[f ](x, a)|qdx , (16)

where q ∈ R. This method based on a continuous covering of the real line would be however
unstable for negative q values since nothing prevents the WT coefficients from vanishing
at some point (x0, a) of the space-scale half-plane.

The wavelet transform modulus maxima (WTMM) [32, 35, 36, 42] method implies that
one changes the continuous sum over space in (16) into a discrete sum over the local
maxima of |Tψ[f ](x, a)|:

Z(q, a) =
∑

l∈L(a)






sup

(x,a′)∈l
a′≤a

|Tψ[f ](x, a′)|







q

. (17)

As emphasized in Refs. [32, 35, 36, 42], the branching structure of the WT skeleton in the
(x, a) half-plane enlightens the hierarchical organization of the singularities (see Figs 3e
and 3f). Thus the WT skeleton indicates how to position, at the considered scale a, the
oscillating boxes in order to obtain a partition of the singularities of f . The sup in (17)
can be regarded as a way to define a scale adaptive “Hausdorff-like” partition. Now from
the deep analogy that links the multifractal formalism to thermodynamics [36, 47, 50], one
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can define the exponent τ(q) from the power-law behavior of the partition function :

Z(q, a) ∼ aτ(q) , a→ 0+ , (18)

where q and τ(q) again play respectively the role of the inverse temperature and the free
energy. The main result of this wavelet-based multifractal formalism is that in place of the
energy and the entropy (i.e. the variables conjugated to q and τ), one has h, the Hölder
exponent, and D(h), the singularity spectrum. This means that the singularity spectrum
of f can be determined from the Legendre transform of the partition function scaling
exponent τ(q) [42, 99]:

D(h) = min
q

(qh− τ(q)) . (19)

From the properties of the Legendre transform, it is easy to see that homogeneous fractal
functions that involve singularities of unique Hölder exponent h = ∂τ/∂q, are characterized
by a τ(q) spectrum which is a linear function of q. On the contrary, a nonlinear τ(q) curve
is the signature of nonhomogeneous functions that exhibit multifractal properties, in the
sense that the Hölder exponent h(x) is a fluctuating quantity that depends upon the spatial
position x.

Remark 1: The partition function exponents τ(q) are much more than simply some in-
termediate quantities of a rather easy experimental access. For some specific values of
q, they have well known meaning [31, 32]. In full analogy with standard box-counting
arguments, −τ(0) can be identified to the capacity of the set of singularities of f :
−τ(0) = dC({x, h(x) < +∞}). Similarly, τ(1) is related to the capacity of the graph
G of the considered function: dC(G) = max(1, 1 − τ(1)). Finally τ(2) is related to the
scaling exponent β of the spectral density S(k) = |f̂(k)|2 ∼ k−β with β = 2 + τ(2).

Remark 2: Since the WTMM method is mainly devoted to practical applications to
stochastic systems, let us point out that the theoretical treatment of random multifractal

functions requires special attention. A priori, there is no reason that all the realizations
of the same stochastic multifractal process correspond to a unique D(h)-curve. Each re-
alization has its own unique distribution of singularities and one crucial issue is to relate
these distributions to some averaged versions computed experimentally. As emphasized by
Hentschel [100], one can take advantage of the analogy that links the multifractal descrip-
tion to statistical thermodynamics [36, 45–47, 50], by using methods created specifically to
study disorder in spin-glass theory [101]. When carrying out replica averages of the ran-
dom partition function associated with a stochastic function, one gets multifractal spectra
τ(q, n) that generally depend on the number n of members in the replica average (let us
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note that n = 0 and n = 1 respectively correspond to commonly used quenched and an-

nealed averaging [100]. Then, by Legendre transforming τ(q, n), some type of average D(h)
spectra are being found [100]. Some care is thus required when interpreting these average
spectra in order to avoid some misunderstanding of the underlying physics. We refer the
reader to Refs. [42, 99] for rigorous mathematical results concerning the application of the
WTMM method to stochastic functions.

2.4 Defining our battery of analyzing wavelets

There are almost as many analyzing wavelets as applications of the continuous WT. In
our original works [32, 36, 77, 83–85], we have mainly used the class of analyzing wavelets
defined by the successive derivatives of the Gaussian function:

g(N)(x) =
dN

dxN
e−x

2/2 , (20)

for which nψ = N . Throughout this study, we will rather use the set of compactly supported

analyzing wavelets ψ
(n)
(m) plotted in Fig. 2 [94, 102, 103]. They are constructed from Dirac

distributions (ψ
(n)
(0) ) via successive convolutions with the box function χ. The index mψ,

corresponding to the number of convolutions, characterizes the smoothness of the analyzing
wavelet. nψ is by definition the number of vanishing moments of ψ.

Let us note that the functions ψ
(0)
(m) are not analyzing wavelets since there are not of zero

mean. However, when using ψ
(0)
(1) (which is nothing else than the box function χ) into the

(continuous) partition function defined in (16), one recovers some variant of classical box-
counting techniques [49, 61, 62, 64, 65] commonly used for multifractal analysis of singular

measures. Let us also remark that when using ψ
(1)
(0)(x) = δ(x−1)−δ(x), the WT is nothing

but the local increment of the considered function and the (continuous) partition function
(16) then reduces to the so-called structure function of order q (9) [15, 33, 67] . We refer
the reader to Ref. [68] where a comparative study of the structure function approach and
the WTMM method is carried out. The main messages of this study are reported in the
next section.

2.5 The structure function approach versus the WTMM method

It is tempting to relate the exponents τ(q), defined from the WT partition functions (17,18),
to the scaling exponents ζp of the structure functions (9). A simple comparison of (10) and
(19) gives immediately [31, 32]:

τ(q) = ζq − 1. (21)
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Fig. 2. Set of compactly supported analyzing wavelets ψ
(n)

(m). nψ corresponds to the number of vanishing

moments. The functions ψ
(n)

(m) are smooth versions of ψ
(n)

(0) obtained after m successive convolutions with the box
function χ.

But this relationship does not hold for all values of q; this results from intrinsic limitations
of the SF approach [68]. As pointed out just above [31, 32, 97], the local increment of a
function can be seen as its WT computed at point x0 and scale l, with the “poor man’s
wavelet” ∆(x) = ψ

(1)
(0)(x) = δ(x− 1)− δ(x). In this spirit, the SF’s (9) are analogous to the

naive partition functions defined in (16):

Sq(l) =

∫

|δfl(x)|qdx. (22)

However, there are two main differences between the WTMM partition functions (17) and
the SF’s (22) from which result the insufficiencies of the SF method [68].

(i) The continuous integral used to define Sq(l). Indeed, there is no reason, a priori, that
the increment pdf vanishes around δfl = 0. Thus the SF Sq(l) may diverge for q ≤ −1.
Consequently, the ζq spectrum estimate is unstable for q < 0 and from the Legendre
transform properties, only the (increasing) part of the D(h) singularity spectrum (e.g.,
the left part of the D(h) curve in Fig. 4) corresponding to the strongest singularities is
amenable to the SF approach. The first crucial advantage of the WTMM method is that
the partition function (17) is computed using a discrete summation over the WT skeleton
where the WT coefficients do not vanish (by definition of the WTMM); this keeps the
calculation of Z(q, a) stable for q < 0.
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(ii) The poorness of the analyzing wavelet ∆(x). The second main disadvantage of the SF
method is that the “poor’s man wavelet” ∆(x) [31, 32, 97] does not satisfy the criteria to be
an efficient analyzing wavelet. First ∆(x) is only orthogonal to constants but not to higher
order polynomials (nψ = 1). This precludes the detection of singularities with h ≥ 1. Thus,
as demonstrated in Ref. [68], if the maximum value of D(h) is reached for some h ≥ 1, the
accessible range of singularities is even more truncated to values h < hcrit < 1. Moreover,
∆(x) is a singular analyzing wavelet made of two Dirac distributions and therefore it
cannot generally be integrated against tempered distributions. When using (22) to study
some distribution which involves singularities with h ≤ 0, one is generally faced to severe
instabilities in the computation of the SF’s. Therefore, the range of Hölder exponents
accessible to the SF method is not only limited from above (h < hcrit ≤ 1), but also
from below (h > 0). Because one has the freedom to select an analyzing wavelet ψ which
is smooth and which has enough vanishing moments (nψ > hmax), the WTMM method
does not possess any of these drawbacks [68] . This is why the WTMM method is much
more than a simple generalization of commonly used box-counting and structure functions
techniques [31, 32, 35, 36, 42, 77].

2.6 Discriminating multifractal from monofractal synthetic random 1D

signals

This section is devoted to test applications of the WTMM method to random functions
generated either by additive models like fractional Brownian motions [21, 22] or by mul-

tiplicative models like random W-cascades on wavelet dyadic trees [102–106]. For each
model, we first wavelet transform 1000 realizations of length L = 65536 with a first order
(nψ = 1) analyzing wavelet. From the WT skeletons defined by the WTMM, we compute
the mean partition function (17) from which we extract the annealed τ(q) (18) and, in turn,
D(h) (19) multifractal spectra. We systematically test the robustness of our estimates with
respect to some change of the shape of the analyzing wavelet, in particular when increasing
the number nψ of zero moments.

Fractional Brownian signals

Since its introduction by Mandelbrot and Van Ness [21], the fractional Brownian mo-
tion (fBm) has become a very popular model in signal and image processing [1–22, 27].
In 1D, fBm has proved useful for modeling various physical phenomena with long-range
dependence, e.g., “1/f” noises. The fBm exhibits a power spectral density S(k) ∼ 1/kβ,
where the spectral exponent β = 2H + 1 is related to the Hurst exponent H. fBm has
been extensively used as test stochastic signals for Hurst exponent measurements. The
performances of classical methods (e.g., height-height correlation function, variance and
power spectral methods, first return and multireturn probability distributions, maximum
likelihood techniques) [29, 30, 107–114] have been recently competed by wavelet-based tech-
niques [115–125] . A fBm BH(x) indexed by H ∈]0, 1[, is a Gaussian process of mean value
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0 and whose correlation function is given by

< BH(x)BH(y) >=
σ2

2

(

|x|2H + |y|2H − |x− y|2H
)

, (23)

where <> represents the mean value. The variance of such process is

var(BH(x)) = σ2|x|2H . (24)

The classical Brownian motion corresponds to H = 1/2 and to a variance var(B1/2(x)) =
σ2|x|. On can easily show that the increments of a fBm, i.e, δBH,l = BH(x + l) − BH(x)
(l ∈ R+∗ fixed), are stationary. Indeed, the correlation function depends only on x− y and
l:

< δBH,l(x)δBH,l(y) >=
σ2

2

(

|x− y + l|2H + |x− y − l|2H − 2|x− y|2H
)

. (25)

For H = 1/2, we recover the fact that the increments of the classical Brownian motion
are independent. For any other value of H, the increments are either positively correlated
(H > 1/2: persistent random walk) or anti-correlated (H < 1/2: antipersistent random
walk). Moreover, from (23) one gets:

BH(x+ λy)−BH(x) ' λH (BH(x+ y)−BH(x)) , (26)

where ' stands for the equality in law. This means that fBm’s are self-affine processes
(1) and that the Hurst exponent is H. The higher H, the more regular the motion. But
since (26) holds for any x and y, this means that almost all realizations of the fBm are
continuous, everywhere non differentiable with a unique Hölder exponent h(x) = H, ∀x
[1, 22, 32, 126]. Thus the fBm’s are homogeneous fractals characterized by a singularity
spectrum which reduces to a single point:

D(h) = 1 if h = H , (27)

= −∞ if h 6= H .

By Legendre transformingD(h), one gets the following expression for the partition function
exponents:

τ(q) = qH − 1 . (28)

τ(q) is a linear function of q with a slope given by the index H of the fBm. Let us point
out that τ(2) 6= 0 (i.e. H 6= 1/2) indicates the presence of long-range correlations.

In Figs 3 and 4, we report the results of a statistical analysis of fBm’s using the WTMM
method [32, 35, 36, 68]. We mainly concentrate on B1/3 since it has a k−5/3 power-spectrum
similar to the spectrum of the multifractal stochastic signal we will study in the next sec-
tion. Actually, our goal is to demonstrate that, where the power spectrum analysis fails, the
WTMM method succeeds in discriminating unambiguously between these two fractal sig-
nals. The numerical signals were generated by filtering uniformly generated pseudo-random
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noise in Fourier space in order to have the required k−5/3 spectral density. A B1/3 fractional
Brownian trail is shown in Fig. 3a. Fig. 3c illustrates the WT coded, independently at each
scale a, using 256 colors. The analyzing wavelet is ψ

(1)
(3) (nψ = 1). Fig. 4a displays some plots

of log2 Z(q, a) versus log2(a) for different values of q, where the partition function Z(q, a)
has been computed on the WTMM skeleton shown in Fig. 3e, according to the definition
(17). Using a linear regression fit, we then obtain the slopes τ(q) of these graphs. As shown
in Fig. 4c, when plotted versus q, the data for the exponents τ(q) consistently fall on a
straight line that is remarkably fitted by the theoretical prediction τ(q) = q/3− 1 (28). As
expected theoretically, we find from the numerical application of the WTMM method, that
the fBm B1/3 is a nowhere differentiable homogeneous fractal signal with a unique Hölder
exponent h = H = 1/3 as given by the slope of the linear τ(q) spectrum (the hallmark of
homogeneous fractal scaling). Similar good estimates are obtained when using analyzing
wavelets of different orders, and this whatever the value of the index H of the fBm.

Random W-cascades

Multiplicative cascade models have enjoyed increasing interest in recent years as the
paradigm of multifractal objects [1, 45, 48, 53, 54, 100]. The notion of cascade actually refers
to a self-similar process whose properties are defined multiplicatively from coarse to fine
scales. In that respect, it occupies a central place in the statistical theory of turbulence [15,
54, 67]. Since Richardson’s scenario [127], the turbulent cascade picture has been often in-
voked to account for the intermittency phenomenom observed in fully developed turbulent
flows [15, 53, 54, 67]: energy is transferred from large eddies down to small scales (where it
is dissipated) through a cascade process in which the transfer rate at a given scale is not
spatially homogeneous, as supposed in the theory developed by Kolmogorov in 1941 [128],
but undergoes local intermittent fluctuations [15, 53, 54, 67]. Over the past fourty years,
refined models including the log-normal model of Kolmogorov [129] and Obukhov [130],
multiplicative hierarchical cascade models like the random β-model [43], the α-model [131],
the p-model [132] (for a review, see Ref. [54]), the log-stable models [133–135] and more
recently the log-infinitely divisible cascade models [136–140], have grown in the literature
as reasonable models to mimic the energy cascading process in turbulent flows. On a very
general ground, a self-similar cascade is defined by the way the scales are refined and by the
statistics of the multiplicative factors at each step of the process [53, 54, 100, 135]. One can
thus distinguish discrete cascades that involve discrete scale ratios leading to log-periodic
corrections to scaling (discrete scale invariance [32, 84, 85, 95]), from continuous cascades
without preferable scale factors (continuous scale invariance). More fundamentally, there
are two main classes of self-similar cascade processes : deterministic cascades that gener-
ally correspond to solvable models and random cascades that are likely to provide more
realistic models but for which some theoretical care is required as far as their multifractal
limit and some basic multifractal properties (including multifractal phase transitions) are
concerned [100]. As a notable member of the later class, the independent random cascades
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Fig. 3. WT of monofractal and multifractal stochastic signals. Fractionnal Brownian motion: (a) a real-
ization of B1/3 (L = 65536); (c) WT of B1/3 as coded, independently at each scale a, using 256 colors from black
(|Tψ| = 0) to red (maxb |Tψ|); (e) WT skeleton defined by the set of all the maxima lines. Log-normal random

W-cascades: (b) a realization of the log-normal W-cascade model (L = 65536) with the following parameter values
m = −0.355 ln 2 and σ2 = 0.02 ln 2 (see Refs. [103–105]); (d) WT of the realization in (b) represented with the

same color coding as in (c); (f) WT skeleton. The analyzing wavelet is ψ
(1)

(3) (see Fig. 2).

introduced by Mandelbrot (commonly calledM-cascades [53, 141, 142]) as a general model
of random curdling in fully developed turbulence, have a special status since they are
the main cascade model for which deep mathematical results have been obtained [59, 60].
Moreover, as pointed out by Schertzer and Lovejoy [143], this “first generation” of cascade
models is static in the sense that it accounts for the multiplicative hierarchical structure of
the data in the spatial domain only [135]. With the specific goal to model temporal evolu-
tion, these authors have proposed a “second generation” of space-time cascade models that
take into account both the scaling anisotropy between space and time, and the breaking
of the mirror symmetry along the temporal axis, i.e., causality [135, 143, 144].
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Fig. 4. Determination of the τ(q) and D(h) multifractal spectra of fBm B1/3 (red circles) and log-normal
random W-cascades (green dots) using the WTMM method. (a) log2 Z(q, a) vs log2 a: B1/3. (b) log2 Z(q, a) vs
log2 a: log-normal W-cascades with the same parameters as in Fig. 3b. (c) τ(q) vs q; the solid lines correspond
respectively to the theoretical spectra (28) and (29). (d) D(h) vs h; the solid lines correspond respectively to the

theoretical predictions (27) and (30). The analyzing wavelet is ψ
(1)

(3) . The reported results correspond to annealed
averaging over 1000 realizations of L = 65536.

Paradoxically, if there is a plethora of mono and multifractal cascade models in the lit-
erature that generate deterministic as well as random singular measures in the small-scale
limit, there are still only a handful of distinct algorithms for synthesizing “rough” functions
of a single variable with multifractal statistics. Beyond the problem of the multifractal de-
scription of singular functions that has been solved with the WTMMmethod [32, 35, 36, 42],
there is thus the practical issue of defining in any concrete way how to build a multifractal
function. Schertzer and Lovejoy [133] suggested a simple power-law filtering (fractional
integration) of singular cascade measures. So, this model combines a multiplicative pro-
cedure with an additive one reminiscent of some algorithms to generate fBm [1, 27, 30].
In Refs. [34, 145], the midpoint displacement technique for building fBm was generalized
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to generate deterministic or random multi-affine functions. The same goal was achieved
in Refs. [32, 42] by combining fractional or ordinary integration with signed measures ob-
tained by recursive cascade like procedures. Several other attempts to simulate “synthetic
turbulence” that shares the intermittency properties of turbulent velocity data have par-
tially succeeded [146–149]. More recently, the concept of self-similar cascades leading to
multifractal measures has been generalized to the construction of scale-invariant signals
using orthonormal wavelet basis [102–106]. Instead of redistributing the measure over sub-
intervals with multiplicative weights, one allocates the wavelet coefficients in a multiplica-
tive way on the dyadic grid. This method has been implemented to generate multifractal
functions from a given deterministic or probalistic multiplicative process (see section 6.2).
From a mathematical point of view, the convergence of these W-cascades and the regular-
ity properties of the so-obtained deterministic or stochastic functions have been discussed
in Ref. [105].

As inspired from the modelling of fully developed turbulent signals by log-infinitely
divisible multiplicative processes [136–140], we will mainly concentrate here on the log-
normalW-cascades in order to calibrate the WTMM method. If m and σ2 are respectively
the mean and the variance of lnW (where W is a multiplicative random variable with
log-normal probability distribution), then, as shown in Refs. [103–105], a straitghtforward
computation leads to the following τ(q) spectrum:

τ(q) = − log2 < W q > −1 , ∀ q ∈ R (29)

= − σ2

2 ln 2
q2 − m

ln 2
q − 1 ,

where < ... > means ensemble average. The corresponding D(h) singularity spectrum is
obtained by Legendre transforming τ(q) (29):

D(h) = −(h+m/ ln 2)2

2σ2/ ln 2
+ 1 . (30)

According to the convergence criteria established in Ref. [105] , m and σ2 have to satisfy
the conditions:

m < 0 and
|m|
σ

>
√
2 ln 2. (31)

Moreover, by solving D(h) = 0, one gets the following bounds for the support of the D(h)
singularity spectrum:

hmin = − m

ln 2
−
√
2σ√
ln 2

, hmax = − m

ln 2
+

√
2σ√
ln 2

. (32)

In Fig. 3b is illustrated a realization of a log-normal W-cascade for the parameter values
m = −0.355 ln 2 and σ2 = 0.02 ln 2. The corresponding WT and WT skeleton as computed
with ψ

(1)
(3) are shown in Figs 3d and 3f respectively. The results of the application of the
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WTMM method are reported in Fig. 4. As shown in Fig. 4b, when plotted versus the
scale parameter a in a logarithmic representation, the annealed average of the partition
functions Z(q, a) displays a well defined scaling behavior over a range of scales of about
5 octaves. Let us point out that scaling of quite good quality is found for a rather wide
range of q values : −5 ≤ q ≤ 10. When processing to a linear regression fit of the data
over the first four octaves, one gets the τ(q) spectrum shown in Fig. 4c. This spectrum
is clearly a nonlinear function of q, the hallmark of multifractal scaling. Moreover, the
numerical data are in remarkable agreement with the theoretical quadratic prediction (29).
Similar quantitative agreement is observed on the D(h) singularity spectrum in Fig. 4d
which displays a single humped parabola shape that characterizes intermittent fluctuations
corresponding to Hölder exponents values ranging from hmin = 0.155 to hmax = 0.555 (32).
Unfortunately, to capture the strongest and the weakest singularities, one needs to compute
the τ(q) spectrum for very large values of |q|. This requires the processing of many more
realizations of the considered log-normal random W-cascade.

The test applications reported in this section demonstrate the ability of the WTMM
method to resolve multifractal scaling of 1D signals, a hopeless task for classical power
spectrum analysis. They were used on purpose to calibrate and to test the reliability of our
methodology and of the corresponding numerical tools with respect to finite-size effects
and statistical convergence.

3 Wavelet based fractal analysis of DNA sequences

Applications of the WTMM method to 1D signals have already provided insight into a wide
variety of outstanding problems [77] such as fully developed turbulence [32, 35, 36, 94, 102–
104, 150], finance [151, 152], medical time series analysis [153], fractal growth phenom-
ena [154–157]. In this section, we report a recent developments in the context of statistical
analysis of the complexity of DNA sequences [158–162].

The possible relevance of scale invariance and fractal concepts to the structural com-
plexity of genomic sequences is the subject of considerable increasing interest [25, 26, 163].
During the past few years, there has been intense discussion about the existence, the nature
and the origin of long-range correlations in DNA sequences. Different techniques including
mutual information functions [164, 165], autocorrelation functions [166–168], power spec-
tra [24, 163, 165, 169–171], DNA walk representation [24, 25, 172–177], Zipf analysis [178–
181] were used for statistical analysis of DNA sequences. But despite the effort spent, there
is still some continuing debate on rather struggling questions. In that respect, it is of fun-
damental importance to corroborate the fact that the reported long-range correlations are
not just an artefact of the compositional heterogeneity of the genome organization [166–
168, 171, 172, 175–177]. Furthermore, it is still an open question whether the long-range
correlation properties are different for protein-coding (exonic) and noncoding (intronic, in-
tergenetic) sequences [24, 25, 163–170, 173, 174, 176, 178–182]. One of the main obstacles
to long-range correlation analysis is the mosaic structure of DNA sequences which are
well known to be formed of “patches” (“strand bias”) of different underlying compositions
[24, 25, 172]. These patches appear as trends in the DNA walk landscapes and are likely
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to introduce some breaking of scale invariance [24, 25, 171, 172, 175, 176]. Most of the tech-
niques used so far for characterizing the presence of long-range correlations are not well
adapted to study patchy sequences. In a preliminary work [158, 159], we have emphasized
the WT as a very powerful technique for fractal analysis of DNA sequences. By considering
analyzing wavelets that make the WT microscope blind to low-frequency trends, one can
reveal and quantify the scaling properties of DNA walks. Here we report on recent results
obtained by applying the WTMM method to various genomic sequences selected in the
human genome as well as in other genomes of the three kingdoms [158–162].

3.1 How to make the WT microscope blind to compositional patchniness ?

A DNA sequence is a four-letter (A,C,G,T) text where A, C, G and T are the bases adenine,
cytosine, guanine and thymine respectively. A popular method to graphically portray the
genetic information stored in DNA sequences consists in mapping them in some variants of
a n-dimensional random walk [183–185]. In this work, we will follow the strategy originally
proposed by Peng et al. [24]. The so-called “DNA walk” analysis requires first to convert
the DNA text into a binary sequence. This can be done, for example, on the basis of
purine (Pu = A,G) versus Pyrimidine (Py = C,T) distinction, by defining an incremental
variable that associates to position i the value χ(i) = 1 or −1, depending on wheter the ith
nucleotide of the sequence is Pu or Py. Each DNA sequence is thus represented as a string
of purines and pyrimidines. Then the graph of the DNA walk is defined by the cumulative
variables:

f(n) =
n
∑

i=1

χ(i) . (33)

As an illustration, we show in Fig. 5a the graph of the DNA walk for the sequence of
the bacteriophage λ. The patchiness of this coding sequence is patent; one clearly recog-
nizes four regions of different strand bias, while the fluctuations about these main trends
are hardly perceptible to eyes at the scale of the entire sequence. Actually, if one pro-
ceeds to some enlargements of this picture, one notices that the fluctuations involved
are quite complex and possess some scale-invariant properties. The mosaic character of
DNA consisting of patches of different composition (purine-rich regions, as compared to
the average concentration over the entire strand, alternate with pyrimidine-rich regions
corresponding to different trends in the DNA landscape shown in Fig. 5a) is generic of
coding sequences. Nonconding sequences also display some patchiness which seems gener-
ally less obvious to distinguish from the bare fluctuations as already noticed in previous
works [24, 25, 111, 172, 186]. This mosaic structure is recovered whatever the coding rule
one uses. We refer the reader to Ref. [159] for the use of alternative base pair codings. In
the present study, we will also consider a representation inspired by the binary coding pro-
posed by Voss [169, 170] and which consists in decomposing the nucleotide sequence into 4
sequences corresponding to A, C, T or G, coding with χ(i) = 1 at the nucleotide position
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Fig. 5. WT analysis of the bacteriophage λ genome (L = 48502). (a) DNA walk displacement f(x) based
on purine-pyrimidine distinction, vs nucleotide distance x. (b) WT of f(x) computed with g(1) (20); Tg(1)(b, a)
is coded, independently at each scale a, using 256 colors from black (minb|Tg(1) |) to red (maxb|Tg(1) |). (c) Same

analysis as in (b) but with the second-order analyzing wavelet g(2). (d) Tg(1)(b, a = a1) vs b for a1 = 12 (nucleotides).

(e) Tg(1)(b, a = a2) vs b for a2 = 384 (nucleotides). (f) Same analysis as in (e) but with g(2).

and χ(i) = −1/3 at other positions. The DNA walk obtained with the A mononucleotide
coding for the yeast chromosome I is shown in Fig. 7a for illustration [161].

Even though the patchy structure of DNA sequences probably contains biological in-
formations of great importance, it is rather cumbersome as far as long-range correlation
investigation is concerned. A lot of effort has been spent in order to master the presence of
trends in DNA walks (and of course of trend changing). Several phenomenological methods
have been proposed mainly by the Boston group. The “min-max” method in the pioneering
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work of Peng et al. [24] has for major drawback that it requires the investigator to remove by
hand the trends after identifying the local minima and maxima of the DNA landscape. The
“detrended fluctuation analysis” [111, 186] recently used by this group looks much more
reliable since it does not require, a priori, any decision of the investigator. This method
consists in partitioning the entire landscape into boxes of length l and in computing the
“detrended walk” as the difference between the original walk and the local trend. But as
emphasized by Voss [170], some care is required when attempting to remove bias.

The wavelet analysis of the bacteriophage λ sequence is shown in Fig. 5. Figure 5b shows
the WT space-scale representation of this DNA signal when using the first derivative of
the gaussian function (20). When using a coding similar to the one prompted in previous
studies, the WT is organized in a tree like structure from large to small scales, that looks
qualitatively similar to the fractal branching observed in the WT representations of fBm’s
(Fig. 3c) and log-normal random signals (Fig. 3d). In Figs 5d and 5e, two horizontal cuts of
Tg(1)(b, a) are shown at two different scales a = a1 = 22 and a2 = 27 that are represented by
the dashed lines in Fig. 5b. When taking into account the characteristic size of the analyz-
ing wavelet at the scale a = 1 corresponding to 3 nucleotides, these two scales correspond
to looking at the fluctuations of the DNA walk over a characteristic length of the order of
12 and 384 nucleotides respectively. When focusing the WT microscope at the small scale
a = a1 in Fig. 5d, since g(1) is orthogonal to constants (nψ = 1), one filters out the low
frequency component and reveals the local (high frequency) fluctuations of f(x), i.e., the
local fluctuations in purine and pyrimidine compositions over small size (∼ 12 nucleotides)
domains. When increasing the WT magnification in Fig. 5e, one realizes that these fluctu-
ations actually occur around three successive linear trends; g(1) not being blind to linear
behavior, the WT coefficients fluctuate about non zero constant behavior that correspond
to the slopes of those linear trends. Although this phenomenon is more pronounced when
progressively increasing the scale parameter a towards a value that corresponds to the
characteristic size (∼ 15000 nucleotides) of these strand bias, it is indeed present at all
scales. In Fig. 5f, at the same coarse scale a = a2 as in Fig. 5e, the fluctuations of the
WT coefficients are shown as computed with the order-2 analyzing wavelet g(2) (nψ = 2).
The WT microscope now being also orthogonal to linear behavior, the WT coefficients
fluctuate about zero and one does not see the influence of the strand bias anymore, and
this at all scales (Fig. 5c). Furthermore, by considering successively g(3), g(4),..., one can
hope not only to restore the stationarity of the increments of the DNA signal but also to
eliminate more complicated nonlinear trends, that could be confused with the presence of
long-range correlations in DNA sequences [158, 159].

3.2 Application of the WTMM method to human DNA sequences

Demonstration of the monofractality of DNA walks

As a first application of the WTMM method, let us focus on the statistical analysis of
coding and noncoding sequences in the human genome [158–160, 162]. The results reported
in Fig. 6 correspond to the study of 2184 introns of length L ≥ 800 and of 226 exons of
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Fig. 6. Comparative WTMM analysis of the DNA walks of 2184 introns (L ≥ 800) and 226 exons
(L ≥ 600) in the human genome. The analyzing wavelet is g(2). The DNA walks are generated using the G
mononucleotide coding for introns (red) and exons (blue). The reported results correspond to quenched averaging
over our statistical samples of introns and exons respectively. (a) < log2 Z(q, a) > vs log2 a for various values
of q. (b) τ(q) vs q; the solid lines correspond to the theoretical spectrum τ(q) = qH − 1 (28) for fBm’s with
H = 0.60± 0.02 (introns) and 0.53± 0.02 (exons). (c) h(q) = (τ(q)+ 1)/q vs q for the coding subsequences relative
to position 1 (blue circles), 2 (green circles) and 3 (red circles) of the bases within the codons; the data for the
introns (red squares) are shown for comparison; the horizontal broken-lines correspond to the following respective
values of the Hurst exponent H = 0.55, 0.58 and 0.60.

length L ≥ 600 selected in the EMBL data bank [162]. The lenght criteria used to select
these sequences result from some compromise between the control of finite-size effects in
the WTMM scaling analysis (those sequences are rather short sequences: < L >introns'
800, < L >exons' 150) and the achievement of statistical convergence (2184 introns and
226 exons are rich enough statistical samples). Figure 6a displays plots of the partition
functions Z(q, a), computed from the WT skeletons using g(2) as analyzing wavelet, versus
the scale parameter a in a logarithmic representation. These results correspond to quenched
averaging over the corresponding 2184 intron walks (red curves) and 226 exon walks (blue
curves) generated using the G mononucleotide coding. For a rather wide range of q values:
−2 ≤ q ≤ 4, scaling actually operates over a sufficiently large range of scales for the
estimate of the τ(q) exponents to be meaningful. The τ(q) spectra obtained from linear
regression fits of the intron and exon data are shown in Fig. 6b. For both these noncoding
and coding sequences, the data points fall remarkably on a straight line which indicates that
the considered intron walks and exon walks are likely to display monofractal scaling. But
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the slope of the staight line obtained for introns H = ∂τ(q)/∂q = 0.60± 0.02 is definitely
larger than the slope of the straight line derived for the exonsH = 0.53±0.02. This is a clear
indication that intron walks display long-range correlations (H > 1/2), while exon walks
look much more like uncorrelated random walks (H ' 1/2). At first sight these results are
in good agreement with the conclusions of previous studies concerning the existence of long-
range correlations in noncoding DNA sequences only [24, 25, 164, 182] . Similar observations
are reported in Refs. [158, 162], when investigating the largest individual introns and exons
found in the EMBL data bank.

One of the most striking result of our WTMM analysis in Fig. 6, is the fact that the
τ(q) spectra extracted for both sets of introns and exons, are well fitted by (28), i.e., the
analytical spectrum for fBm’s. Let us note that this remarkable finding is robust with
respect to change in the considered mononucleotide coding used to generate the random
walks.

About the Gaussian character of the fluctuations in DNA walk landscapes

Within the perspective of confirming the monofractality of DNA walks, we have studied the
probability density function (pdf) of wavelet coefficient values ρa(Tg(2)(., a)), as computed at
a fixed scale a in the fractal scaling range. According to the monofractal scaling properties,
one expects these pdfs to satisfy the self-similarity relationship:

aHρa(a
HT ) = ρ(T ) , (34)

where ρ(T ) is a “universal” pdf (actually the pdf obtained at scale a = 1) that does not
depend on the scale parameter a. In Refs. [158, 162], we have shown that when plotting
aHρa vs aHT , all the ρa curves corresponding to different scales actually collapse on a
unique curve when using the exponent H = 0.6 for the set of human introns and H = 0.53
for the set of human exons. Moreover, independently of the coding or noncoding nature
of the sequences, the so-obtained universal pdfs cannot be distinguished from a Gaussian
distribution. We will see in Fig. 9c and 9d, that similar gaussian WT coefficient statistics
are observed, on a comparable range of (small) scales in between 10 and 200 nucleotides,
for both the yeast and E-coli genomes. Thus, as explored through the optics of the WT
microscope, the basic fluctuations (about the low frequency trends due to compositional
patchniness) in DNA walks are likely to have monofractal Gaussian statistics. The presence
of long-range correlations in the human introns is in fact contained in the scale dependence
of the variance of this distribution, σ2(a) ∼ a2H , with H = 0.60 ± 0.02 like for persistent
random walk fBms, as compared to the uncorrelated random walk value H = 0.53±0.02 '
1/2 obtained for the coding sequences.
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Fig. 7. DNA walk landscapes of the yeast chromosome I (L = 230 209). (a) “A” mononucleotide coding.
(b) Trinucleotide (PNuc) coding proposed in Ref. [188] to account for the fluctuations of the local DNA curvature.

Uncovering long-range correlations in coding DNA sequences

Because of the “period three” codon structure of coding DNA, it is natural to investigate
separately the three subsequences relative to the position (1, 2 or 3) of the bases within
their codons [160, 187]. We have build up these subsequences from our set of 226 human
exons and we have repeated the WTMM analysis. The data obtained for the corresponding
τ(q) spectra again fall on straight lines which corroborates monofractal scaling properties
for the three subsequences. As shown in Fig. 6c for the subsequences relative to positions 1
and 2, one gets the same slope h(q) = ∂τ(q)/∂q = 0.55± 0.02, which is undistinguishable
from the value obtained for the overall coding sequences. Surprinsingly, the data for the
subsequence relative to position 3, exhibit a slope which is clearly larger H = 0.58 ±
0.02, i.e., a value which is very close to the exponent H = 0.60 ± 0.02 estimated for the
set of introns. This observation suggests that this third coding subsequence is likely to
display the same degree of long-range correlations as noncoding sequences [160, 162]. We
refer the reader to Refs. [160, 162] for the experimental demonstration that these long-
range correlations are actually GC content dependent. Several mechanisms involved in the
plasticity of genomes can be proposed to account for the observed long-range correlations.
Among these mechanisms, one can exclude insertion-deletion events of DNA fragments of
widely variable sizes which are very rare in exonic regions due to the strong constraints
imposed by their coding properties. Selection pressure arguments can be further invoked to
explain the difference between the correlations observed for the third bases of the codons
as compared to those for bases 1 and 2. Indeed it is well known that most of the degeneracy
of the genetic code is contained in codon position 3.

3.3 Towards a structural interpretation of the long-range correlations in

DNA sequences

Recent success in DNA sequencing provide a wide range of investigation for statistical anal-
ysis of genomic sequences [189–195]. The availability of fully sequenced genomes offers the
possibility to study scale-invariance properties of DNA sequences over a wide range of scales
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Fig. 8. Global estimate of the r.m.s. of WT coefficients of DNA walk landscapes. The analyzing wavelet is
g(2) (20). log10 σ(a)−0.6 log10 a is plotted versus log10 a; the dashed lines corresponding to uncorrelated (H = 1/2)
and strongly correlated (H = 0.80) regimes are drawn to guide the eyes. S.cerevisiae: (a) Global estimate of
the r.m.s of WT coefficients of the A DNA walks of the 16 S. cerevisiae chromosomes (solid lines) and of the
corresponding bending profiles when averaged over the 16 chromosomes (red circles). (b) Comparative analysis for
the true bending profile (red circles) and for a synthetic bending profile obtained by randomly changing the roll
angle values as explained in the text (blue circles). The results are averaged over the 16 yeast chromosomes. Similar
computations after randomly shuffling the original DNA sequences yield no correlations for both the A DNA walks
(black squares) and the bending profiles (green dots). Human contig : (c) Comparative analysis of the A (black
curve), C (orange curve), G (green curve) and T (blue curve) DNA walks and of the corresponding bending profiles
(red circles). Escherichia coli: (d) Same representation as in (c). Viruses, Archaebacteria : Archaeglobus fulgidus

(squares), Epstein-barr virus (dots), Melanoplus sanguinipes entomapoxvirus (circles) and T4 bacteriophage (stars):
(e) “G” DNA walks; (f) bending profiles.
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extending from tens to thousands of nucleotides. The first completely sequenced eucaryotic
genome Saccharomyces cerevisiae [193] (S.c) provides an opportunity to perform a com-
parative wavelet analysis of the scaling properties displayed by each chromosome [161, 162]
(Fig. 7a). When looking at the scale dependence of the root-mean square σ(a) of the
wavelet coefficient pdf computed with g(2) (20), over the DNA walks corresponding to “A”
in each of the 16 yeast chromosomes, one sees, in Fig. 8a, that they all present super-
imposable behavior. We notably observe the same characteristic scale that separates two
different scaling regimes. Let us note that common behavior to the 16 yeast chromosomes
has already been pointed out in Refs. [196, 197]. At small scales, 20 . a . 200, weak
power-law correlations (PLC) are observed as characterized by H = 0.59 ± 0.02, a mean
value which is significantly larger than 1/2. At large scales, 200 . a . 5000, strong PLC
with H = 0.82± 0.01 become dominant with a cutoff around 10000bp (a number which is
by no means accurate) where uncorrelated behaviour is observed. (In this section the scale
parameter is expressed in nucleotide units). The existence of these two scaling regimes is
confirmed in Figs 9a, 9c and 9e [162], where the WT pdfs computed at different scales
(Fig. 9a) are shown to collapse on a single curve, as predicted by the self-similarity rela-
tionship (34), provided one uses the scaling exponent value H = 0.59 in the scale range
10 . a . 100 (Fig. 9c) and H = 0.75 in the scale range 200 . a . 1000 (Fig. 9e). In the
small scale regime, the pdfs are very well approximated by Gaussian distributions (Fig.
9c) which reminds the results of the WTMM analysis of noncoding eucaryotic sequences
in section 3.2. In the large scale regime, the pdfs have stretched exponential-like tails (Fig.
9e). In both regimes, the fact that (34) is verified, corroborates the monofractal nature
of the roughness fluctuations of the yeast DNA walks [162]. We have also examined other
eucaryotic contigs from different organisms (human, rodent, avian, plant and insect) and
we have observed the same characteristic features as those obtained with S.c.. In Fig. 8c,
a similar characteristic scale a∗ ' 100bp is clearly seen on a human contig. Moreover, the
cross-over from a H = 0.62±0.01 to a H = 0.75±0.02 PLC regime is remarkly robust since
the data for the four A, C, G and T DNA walks fall almost on the same curve in the range
20 . a . 2000 [161, 162]. The striking overall similarity of the results obtained with these
different eucaryotic genomes prompted us to also examine the scale invariance properties
of bacterial genomes. In Figs. 8d, 9b, 9d and 9f, are reported the results obtained for Es-
cherichia coli [198] which are typical of what we have observed with fifteen other bacterial
genomes (data not shown) [161, 162]. Again, there exists a well defined characteristic scale
a∗ ' 100 − 200bp that delimits the transition to very strong PLC with H = 0.85 ± 0.02
at large scales. In order to examine if these properties actually extend homogeneously over
the whole genomes, σ(a) was calculated over a window of width l = 2000, sliding along
the DNA walk profiles. The results reported in Fig. 10 clearly reveal the existence of a
characteristic scale a∗ ' 100−200bp which seems to be robust all along the corresponding
DNA molecules and this for all investigated genomes [161, 162]. There exists however an
important difference between eucaryotic and bacterial genomes: no PLC are observed in
the small-scale regime where uncorrelated H = 1/2 Brownian motion-like behaviour with
is observed (Fig. 9d). At this point, it may seem that PLC are inherent to mostly non
coding genomes, but that is not the case. As shown in Fig. 8e for Archaeoglobus fulgidus,
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the wavelet investigation of five archaeal genomes (which are mostly coding) also reveals
the presence of small-scale PLC as observed in eucaryotic genomes, although somewhat less
pronounced [161, 162]. But the striking feature of these data is that the strong large-scale
PLC are present in all bacterial, archaeabacterial and eucaryotic genomes [169, 170].

What mechanism or phenomenon might explain the small-scale PLC in eucaryotic
genomes ? Their total absence in bacterial genomes raises the possibility that they could
be related to certain nucleotide arrangements in the 150bp long DNA regions which
are wrapped around histone proteins to form the eucaryotic nucleosomes [199–201]. In-
deed, eubacterial genomic DNA is associated with histone-like proteins (e.g. Hu), but no
nucleosome-type structure has been detected in these organisms [202]. Following this hy-
pothesis, we have extended the application of the WT microscope to the investigation of
the multi-scale properties of DNA bending signals that are likely to reflect the hierarchical
organization of nucleoprotein complexes. To construct a bending profile that accounts for
the fluctuations of the local DNA curvature, we use the trinucleotide (PNUC) model pro-
posed in Ref. [188]. The results of the WTMM analysis of the bending profiles of the yeast
chromosomes (Fig. 7b) are reported in Figs 8a and 8b [161, 162]. This analysis reveals
striking similarities with the curves resulting from the DNA walk analysis, in both the
small-scale and the large-scale regimes. To ensure that these observations are not simply
due to a “recoding” of the DNA sequences, but due to the proper values of roll angles
used to determine the bending profile, we have randomly changed the table that maps
trinucleotides to roll-angle values. The new table is obtained using a Gaussian distribution
of same mean, variance and symmetries as the original table [188]. As shown in Fig. 8b,
this results in the vanishing of these PLC (now H = 0.51± 0.01 at small scales), establish-
ing that these PLC do indeed reflect persistent scale-invariant structural properties. We
have also examined a number of eucaryotic and eubacterial genomes with similar conclu-
sions [161, 162]. As shown in Figs 8c and 8d for a human contig and E. Coli, the structural
information that is contained in the scaling properties of bending profiles can be directly
extracted from the WTMM reading of the DNA texts [161, 162].

Following the nucleosomal interpretation of PLC in the small-scale regime, the observa-
tion of such correlations in archaeal genomes in Figs. 8e and 8f [161, 162] is consistent with
the presence in archaebacteria of structures similar to the eucaryotic nucleosomes [203–207].
This analysis has also been extended to viral genomes. Small-scale PLC are clearly detected
in organelle genomes and in most viral double-stranded DNA genomes (Herpes-, Adeno-,
Papova-, Parvo- and Hepadna- viruses) as shown for Epstein-barr virus in Figs. 8e and
8f. This further supports the hypothesis of nucleosome-based PLC since nucleosomes have
been observed on several classes of double-stranded DNA viruses [208, 209]. The Poxviri-
dae, which are the only animal DNA viruses replicating in the cytoplasm of their host
cells, code for a bacterial-type of histone-like protein [210], and no PLC are found in this
scale range as shown in Figs. 8e and 8f for Melanoplus sanguinipes virus. This observation
is consistent with our hypothesis and suggests that the genomic DNA of these viruses is
submitted to packaging process different from other animal viruses. Finally, bacteriophage
genomes do not present any small-scale PLC (Figs. 8e and 8f for T4 bacteriophage and data
not shown) as already observed for their eubacterial hosts. Other classes of virus genomes
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Fig. 9. Probability distribution functions of wavelet coefficient values of “A” DNA walks The analyzing
wavelet is the Mexican hat g(2) (20). S.cerevisiae: (a) log2(ρa) vs Tg(2) for the set of scales a = 12 (M), 24 (¤),

48 (◦), 192 (N), 384 (■), and 768 (•); (c) small-scale regime: log2(a
Hρa(a

HTg(2))) vs Tg(2) with H = 0.59; (e)

large-scale regime: log2(a
Hρa(a

HTg(2))) vs Tg(2) with H = 0.75. Escherichia coli: (b) log2(ρa) vs Tg(2) for the set

of scales a = 24 (M), 48 (¤), 96 (◦), 384 (N), 768 (■), and 1536 (•); (d) small-scale regime: log2(a
Hρa(a

HTg(2))) vs

Tg(2) with H = 0.50; (f) large-scale regime: log2(a
Hρa(a

HTg(2))) vs Tg(2) with H = 0.80.
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Fig. 10. Local estimate of the r.m.s σ(a, x) of the WT coefficients of the A DNA walk, computed with
the mexican hat analyzing wavelet g(2). σ(a) is computed over a window of width l = 2000, sliding along the
first 106bp of the yeast chromosome IV (a), Escherichia coli (b) and a human contig (c). log10 σ(a) − 2/3 log10 a
is coded using 128 colors from black (min) to red (max). In this space-scale wavelet like representation, x and a
are expressed in nucleotide units. The horizontal white dashed lines mark the scale a∗ where some minimum is
observed consistenly along the entire genomes : a∗ = 200bp for S.cerevisiae, a∗ = 200bp for E.coli and a∗ = 100bp
for the human contig.

like the single and double-strand RNA viruses (to the exception of the retroviruses) are
very unlikely associated to nucleosomes. In all cases except retroviruses, we observe a total
absence of small-scale PLC. In the case of retroviruses, it is known that the integrated
viral DNA is associated to nucleosomes in the cell nucleus [211]; we clearly confirm the
presence of small-scale PLC (H ' 0.57±0.02). These wavelet based fractal analysis of viral
and cellular genomes of all three kingdoms sustain without failure the fact that small-scale
PLC provide a reliable diagnostic of the existence of eucaryotic nucleosomes.

Several studies have established the presence in genomic sequences of repetitive DNA
motifs related to bending properties [212, 213]. It is noteworthy that a 10.2 base periodic
modulation of correlation functions (not to be misunderstood with strict periodicity) is
observed in eucaryotic genomes, where it has been interpreted in relation to nucleosomal
structures. However there is a fundamental difference between this nucleosome diagnostic
based on periodicity (i.e. invariance with respect to discrete translations) and our analysis
based on scale invariance properties (i.e. invariance with respect to continuous dilations)
which show up as a power law behaviour of the envelop of the correlation function. The
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main conclusion of our WT analysis is that the mechanisms underlying the nucleosomal
structure of eucaryotic genomes are likely to be multi-scale phenomena that involve the
whole set of scales in the 1-200bp range. In other words, the bending sites are not posi-
tioned in a regular sequential manner, as suggested by the periodic-pattern picture, but
are fractally distributed. A number of experimental observations help us interpreting our
results. Nucleosomes can be regarded as mobile (nucleosome sliding [214]) and with in-
herently statistical positioning [215]. They also can be viewed as dynamical structures
transiently exposing stretches of their DNA allowing access to regulatory proteins [216].
‘In that context, the understanding of small-scale PLC should provide further insight into
the nucleosome structure and dynamics.

What mechanisms might explain the strongly correlated patterns observed on the DNA
walks as well as on the corresponding bending profiles in all genomes, in the 200-5000bp
range? As already suggested in Ref. [215], the signals involved in nucleosome binding and
positioning may act collectively over large distances to the packing of nucleosomal arrays
into high-order chromatin structures [199–201, 217]. Since DNA bending sites are key el-
ements for nucleosomal structures, the detailed investigation of large-scale PLC observed
in eucaryotic bending profiles should shed light on the compaction mechanisms at work
in the hierarchical formation and dynamics of chromatin. An important clue provided by
our studies is that similar long distance correlations in bending profiles are also observed
in eubacteria and archaebacteria. It is then tempting to conjecture that the compaction
of the eubacterial nucleoid in rosette-shaped chromosomal structures [218] is submitted to
similar multi-scale structural constraints. Indeed, it is well established that architectural
proteins interacting with DNA bending sites participate to the stabilisation of large nucle-
oprotein arrays, as for example, the eucaryotic HMG and the eubacterial HU histone-like
proteins [219]. Moreover, the individual domains constituting the bacterial nucleoid are
variable in size and position [220]. Actually eucaryotic, eubacterial and archaebacterial
chromosomes are submitted to dynamical constraints that might result in scale invariant
properties of the DNA text. For instance, large-scale PLC may result from DNA struc-
tural features related to the modulation of transcription, replication and recombination
events [221–223]. A deep understanding of the large-scale PLC observed in DNA bending
profiles as well as in DNA walks for all three kingdoms and their interpretation in terms
of structural and dynamical properties remain challenging questions requiring further in-
vestigations.

4 The 2D wavelet transform modulus maxima method for the

multifractal analysis of rough surfaces

Ever since the explosive propagation of fractal ideas [1] throughout the scientific community
in the late 70’s and early 80’s, there have been numerous applications to surface science [5–
8, 10–13, 16–18]. Both real space imaging techniques (including all kinds of microscopy and
optical imaging techniques) and diffraction techniques have been extensively used to study
rough surfaces [18]. The characterization of surface roughness is an important problem
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from a fundamental point of view as well as for the wealth of potential applications in
applied sciences. Indeed, a wide variety of natural and technological processes lead to the
formation of complex interfaces [1–20]. Assigning a fractal dimension to those irregular
surfaces is now become routine in various fields including topography, defect and fracture
studies, growth phenomena, erosion and corrosion processes, catalysis and many other
areas in physics, chemistry, biology, geology, meteorology and material sciences [1–20].
For rough surfaces which are well described by self-affine fractals with anisotropic scale-
invariance [1, 5, 10, 22, 27, 28] various methods (e.g., divider, box, triangle, slit-island, power
spectral, variogram and distribution methods) of computing DF were shown to be very
sensitive to limited resolution as well as finite-size effects [28, 29, 107, 108, 111, 224]. An
alternative strategy consists in computing the so-called roughness exponent H [1, 5, 10]
that describes the scaling of the width (or thickness) of the rough interface with respect
to measurement scale. As for 1D signals (see sections 1 and 2.6), different methods [29,
30, 107, 108, 111, 113, 114] are available to estimate this exponent which is supposed to be
related to the fractal dimension DF = d − H of self-affine surfaces embedded in a d-
dimensional space. Again a number of artefacts may pollute the estimate of the roughness
exponent. Since sensitivity and accuracy are method dependent, it is usually recommended
to simultaneously use different tools in order to appreciate in a quantitative way, the level
of confidence in the measured exponent.

The purpose of this section is to generalize the WTMM method described in sec-
tion 2 [32, 35, 36, 42] from 1D to 2D, with the specific goal to achieve multifractal anal-
ysis of rough surfaces with fractal dimension DF anywhere between 2 and 3. In recent
years, increasing interest has been paid to the application of the WT to image process-
ing [65, 77, 80, 85, 225–227]. In this context, Mallat and collaborators [40, 41] have extended
the WTMM representation in 2D in a manner inspired from Canny’s multiscale edge detec-
tors commonly used in computer vision [228]. Our strategy will thus consists in using this
representation to define a (3D) WT skeleton from which one can compute partition func-
tions and ultimately extract multifractal spectra. A detailed description of this approach
can be found in Refs. [229–233].

4.1 2D continuous wavelet transform for multi-scale edge detection

The edges of the different structures that appear in an image are often the most important
features for pattern recognition. Hence, in computer vision [234, 235], a large class of edge
detectors look for points where the gradient of the image intensity has a modulus which is
locally maximum in its direction. As originally noticed by Mallat and collaborators [40, 41],
with an appropriate choice of the analyzing wavelet, one can recast the Canny’s multi-scale
edge detector [228] in terms of a 2D WT. The general idea is to start smoothing the discrete
image data by convolving it with a filter and then to compute the gradient on the smoothed
signal.
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Let us consider two wavelets that are, respectively, the partial derivatives with respect
to x and y of a 2D smoothing function φ(x, y):

ψ1(x, y) =
∂φ(x, y)

∂x
and ψ2(x, y) =

∂φ(x, y)

∂y
. (35)

We will assume that φ is a well localized (around x = y = 0) isotropic function that
depends on |x| only. In this study, we will mainly use the gaussian function:

φ(x, y) = e−(x2+y2)/2 = e−|x|
2/2 , (36)

as well as the isotropic mexican hat:

φ(x) = (2− x2)e−|x|
2/2 . (37)

The corresponding analyzing wavelets ψ1 and ψ2 are illustrated in Fig. 11. They have one
and three vanishing moments when using respectively the gaussian function (36) and the
mexican hat (37) as smoothing function.

For any function f(x, y) ∈ L2(R), the WT with respect to ψ1 and ψ2 has two compo-
nents and therefore can be expressed in a vectorial form:

Tψ[f ](b, a) =

(

Tψ1 [f ] = a−2
∫

d2x ψ1

(

a−1(x− b)
)

f(x)
Tψ2 [f ] = a−2

∫

d2x ψ2

(

a−1(x− b)
)

f(x)

)

. (38)

Then, after a straightforward integration by parts, one gets:

Tψ[f ](b, a) =a
−2

∇

{∫

d2x φ
(

a−1(x− b)
)

f(x)

}

,

=∇
{

Tφ[f ](b, a)
}

,

=∇{φb,a ∗ f} .

(39)

If φ(x) is simply a smoothing filter like the gaussian function (36), then (39) amounts
to define the 2D wavelet transform as the gradient vector of f(x) smoothed by dilated
versions φ(a−1x) of this filter. If φ(x) has some vanishing moments, then Tφ[f ](b, a) in (39)
is nothing but the continuous 2D WT of f(x) as defined by Murenzi [236, 237], provided
φ(x) be an isotropic analyzing wavelet so that the integration over the angle θ becomes
trivial.

As far as notations are concerned, we will mainly use the representation involving the
modulus and the argument of the WT:

Tψ[f ](b, a) =
(

Mψ[f ](b, a),Aψ[f ](b, a)
)

, (40)

with

Mψ[f ](b, a) =

[

(

Tψ1 [f ](b, a)
)2

+
(

Tψ2 [f ](b, a)
)2
]1/2

, (41)

and

Aψ[f ](b, a) = Arg
(

Tψ1 [f ](b, a) + iTψ2 [f ](b, a)
)

. (42)
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Fig. 11. The analyzing wavelet ψ1 and ψ2 defined in (35). First-order analyzing wavelets obtained from a
gaussian smoothing function φ (36): (a) ψ1; (b) ψ2. Third-order analyzing wavelets obtained from the isotropic
mexican hat smoothing function φ (37): (c) ψ1; (d) ψ2.

4.2 Characterizing the local regularity properties of rough surfaces with the

wavelet transform modulus maxima

In the present study, we will use the term rough surface for an irregular surface on
which there are no overhanging regions. This means that the surface can be correctly
described by a function z = f(x), which specifies the height of the surface at the point
x = (x, y). Of particular interest are the rough surfaces corresponding to self-affine fractals
in R3 [1, 5, 10, 22, 27, 28]. Moreover, we will assume that the considered functions possess
only cusp-like singularities [231]. Under these assumptions, the situation is nevertheless
trickier than in 1D [229–232]. Indeed, one has to distinguish two main cases depending on
whether scale invariance is under isotropic or anisotropic dilations [1, 29, 135, 143, 144, 238].

Isotropic dilations: Local scale invariance under isotropic dilations means that locally,
around the point x0, the function f behaves as:

f(x0 + λu)− f(x0) w λh(x0)
(

f(x0 + u)− f(x0)
)

, (43)

where λ > 0 and u is a unit vector. If the scaling exponent h(x0) does not depend upon
the direction of u, then f displays isotropic local scale-invariance around x0 and the corre-
sponding singularity is of Hölder exponent h(x0). If, on the contrary, the scaling exponent
depends upon the direction of u, then the Hölder exponent is the minimum value of h over
all the possible orientations of u. Thus f displays anisotropic scale-invariance around x0

with one, several or a continuum of privileged directions along which the variation of f
defines the Hölder exponent of the singularity located at x0.

Anisotropic dilations: Local scale invariance under anisotropic dilations means that locally
around the point x0, the function f behaves as [133, 135, 143, 144, 238]:

f
(

x0 + Λα(λ)rθu
)

− f(x0) w λh(x0)
(

f(x0 + u)− f(x0)
)

, (44)
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where λ > 0 and u is a unit vector. rθ is a rotation matrix and Λα(λ) is a positive diagonal
2× 2 matrix that accounts for anisotropic self-affine scale transformation in the θ-rotated
referential with origin x0:

Λα(λ) =

(

λ 0
0 λα

)

. (45)

The function f thus displays anisotropic scale-invariance around x0 and the Hölder expo-
nent is given by the behavior of f in the direction θ (α < 1) or θ + π/2 (α > 1).

Very much like the WT analysis of cusp singularities in 1D (section 2.2), in order
to recover the Hölder exponent h(x0) of a function f from R2 to R, one needs to study
the behavior of the WT modulus inside a cone |x − x0| < Ca in the space-scale half
space [229, 230, 238]. As originally proposed by Mallat and collaborators [40, 41], a very
efficient way to perform point-wise regularity analysis is to use the wavelet transform
modulus maxima (WTMM). In the spirit of Canny edge detection [228], at a given scale a,
the WTMM are defined as the points b where the WT modulusMψ[f ](b, a) (41) is locally
maximum along the gradient direction given by the argument Aψ[f ](b, a) (42). These
modulus maxima are inflection points of f ∗φa(x). As illustrated in the example just below,
these WTMM lie on connected chains hereafter called maxima chains [229–232]. In theory,
one only needs to record the position of the local maxima ofMψ along the maxima chains
together with the value ofMψ[f ] and Aψ[f ] at the corresponding locations. At each scale
a, our wavelet analysis thus reduces to store those WTMM maxima (WTMMM) only. They
indicate locally the direction where the signal has the sharpest variation. This orientation
component is the main difference between 1D and 2D WT analysis. These WTMMM are
disposed along connected curves across scales called maxima lines [230, 231]. We will define
the WT skeleton as the set of maxima lines that converge to the (x, y)-plane in the limit
a → 0+. This WT skeleton is likely to contain all the information concerning the local
Hölder regularity properties of the function f under consideration.

Let us first illustrate the above definitions on the function f shown in Fig. 12a:

f(x) = Ae−(x−x1)2/2σ2

+B|x− x0|0.3 . (46)

This function is C∞ everywhere except at x = x0 where f is isotropically singular with
a Hölder exponent h(x0) = 0.3. Its 2D WT (38) with a first-order analyzing wavelet (the
smoothing function φ(x) is the isotropic gaussian function) is shown in Fig. 12b for a given
scale a = 23σW , where σW = 13 is the width (in pixel units) of the analyzing wavelet at
the smallest scale where it is still well enough resolved. Actually, Fig. 12b illustrates the
behavior of Mψ[f ]. From a visual inspection of this figure, on can convince oneself that
the modulus is radially symmetric around x0 where is located the singularity S. This is
confirmed by the behavior of Aψ[f ] which rotates uniformly from 0 to 2π around x0. The
WTMM as well as the WTMMM are shown in Fig. 12c for a discrete set of scales which
allows us to reconstruct a three-dimensional representation in the space-scale half-space. At
small scale, there exist mainly two maxima chains. One is a closed curve around x0 where
is located the singularity S. The other one is an open curve which partially surrounds
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the localized smooth structure G. On each of these maxima chains, one finds only one
WTMMM (•) whose corresponding argument is such that the gradient vector points to S
and G respectively. As far as the singularity S is concerned, this means that the direction
of largest variation of f around S is given by θx0 = Aψ[f ]+π, where Aψ[f ] is the argument
of the corresponding WTMMM. When increasing the scale parameter, the maxima chains
evolve; in particular the closed maxima chain around S swells (it characteristic size behaves
like a) until it connects with the maxima chain associated with G to form a single closed
curve surrounding both S and G. The topological evolution of the maxima chains in the
space-scale half-space in Fig. 12c enlightens the existence of two maxima lines obtained
by linking the WTMMM step by step (i.e. as continuously as possible) from small to
large scales. One of these maxima lines points to the singularity S in the limit a→ 0+. (To
understand the bubble structure of Lx0(a) in Fig. 12c, we refer the reader to Refs. [231, 233]
where a detailed description of the algorithm to construct the whole 3D skeleton in general
situations is provided). As shown in Fig. 12d, along this maxima line (Lx0(a)), the WT
modulus behaves as [40, 41]

Mψ[f ]
(

Lx0(a)
)

∼ ah(x0) , a→ 0+ (47)

where h(x0) = 0.3 < nψ is the Hölder exponent of S. Moreover, along this maxima line,
the WT argument evolves towards the value [231]:

Aψ[f ]
(

Lx0(a)
)

= π + θx0 , (48)

in the limit a → 0+, where θx0 is nothing but the direction of the largest variation of f
around x0, i.e. the direction to follow from x0 to cross the maxima line at a given (small)
scale. From the maxima line Lx0(a), one thus gets the required amplitude and directional
informations to characterize the local Hölder regularity of f at x0. Note that along the other
maxima line Lx1(a) which points to x1 where is located the smooth localized structure G,
the WT modulus behaves as (Fig. 12e):

Mψ[f ]
(

Lx1(a)
)

∼ anψ , a→ 0+ (49)

where nψ = 1 is the order of the analyzing wavelet. Equations (47) and (49) can thus
be seen as the analogs of (14) and (15) in 1D. We refer the reader to Ref. [231] where
a similar WTMMM treatment is also shown to apply to anisotropic as well as self-affine
singularities.

4.3 The 2D wavelet transform modulus maxima method

Methodology

Our strategy will consist in mapping the methodology developed in section 2.3 for multi-
fractal analysis of irregular 1D landscapes, to the statistical characterization of roughness
fluctuations of 2D surfaces [229–233]. The 2D WTMM method relies upon the space-scale
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Fig. 12. Estimating the Hölder exponent from the behavior of the WT modulus along the maxima
lines. (a) Graph of the function f(x) defined in (46): the isotropic singularity S is located at x0 = (−256,−256);
the Gaussian localized structure G of width σ = 128 is located at x1 = (256, 256); the parameters are A = 1
and B = −1. (b) Mψ [f ] coded from black (Mψ = 0) to red (max Mψ ) with 256 colors as computed at scale
a = 23σW where σW = 13 (pixels) is the characteristic size the first-order analyzing wavelet ψ (see Fig. 11) at the
smallest resolved scale; the solid lines correspond to the maxima chains defined by the WTMM; the local maxima
(resp. minima) along these chains are indicated by (•) (resp. (◦)) from which originates an arrow whose length
is proportional to Mψ [f ] and its direction (with respect to the x-axis) is given by the WTMM argument Aψ [f ].
(c) Three-dimensional representation of the topological evolution of the WTMM chains of f in the space-scale
half-hyperplane. The WTMMM (•) are disposed on connected curves called maxima lines. These maxima lines are
obtained by linking each WTMMM computed at a given scale to the nearest WTMMM computed at the scale just
above. There exist two maxima lines, Lx0 and Lx1 , pointing respectively to the singularity S and to the smooth
localized structure G in the limit a 7→ 0+. (d) Evolution of Mψ [f ] along Lx0 . (e) Evolution of Mψ [f ] along Lx1 .
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partitioning given by the WT skeleton. As discussed in section 4.2, this skeleton (see
Fig. 13e) is defined by the set of maxima lines which point to the singularities of the
considered function and therefore is likely to contain all the information concerning the
fluctuations of point-wise Hölder regularity. Let us define L(a) as the set of all maxima
lines that exist at the scale a and which contain maxima at any scale a′ ≤ a. As discussed
in section 4.2, the important feature is that each time the analyzed image has a Hölder
exponent h(x0) < nψ, there is at least one maxima line pointing towards x0 along which
(47) is expected to hold. In the case of fractal functions, we thus expect that the number of
maxima lines will diverge in the limit a→ 0+, as the signature of the hierarchical organi-
zation of the singularities. The WTMM method consists in defining the following partition
function directly from the WTMMM that belong to the WT skeleton:

Z(q, a) =
∑

L∈L(a)

(Mψ[f ](x, a))
q , (50)

where q ∈ R. As in 1D (section 2.3), from the scaling behavior of this partition function:

Z(q, a) ∼ aτ(q) , a→ 0+ (51)

one can extract the D(h) singularity spectrum (as defined as the Hausdorff dimension of
the set of points such that the Hölder exponent of f is h) from a simple Legendre transform:

D(h) = min
q

(qh− τ(q)) . (52)

Probability density functions

From the definition of the partition function in (50), one can transform the discrete sum
over the WTMMM into a continuous integral over Mψ[f ]:

Z(q, a)/Z(0, a) =<Mq > (a) =

∫

dMMqPa(M) . (53)

The multifractal description thus consists in characterizing how the moments of the pdf
Pa(M) of M behave as a function of the scale parameter a. The power-law exponents
τ(q) in (51), therefore quantify the evolution of the shape of the M pdf across scales. At
this point, let us remark that one of the main advantage of using the WT skeleton is the
fact that, by definition, M is different from zero and consequently that Pa(M) generally
decreases exponentially fast to zero at zero. This observation is at the heart of the WTMM
method since, for this reason, one can not only compute the τ(q) spectrum for q > 0 but
also for q < 0 [229–232]. From the Legendre transform of τ(q) (52), one is thus able to
compute the whole D(h) singularity spectrum, i.e., its increasing left part (q > 0) as well
as its decreasing right part (q < 0).
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But, although we have decided to mainly use isotropic analyzing wavelets, we have
seen in section 4.2 that from the analysis of the WT skeleton, one is able to also extract
directional informations via the computation of Aψ[f ](x, a). It is thus very instructive to
extend our statistical analysis to the investigation of the joint pdf Pa(M,A) [230, 231].
Two main situations have to be distinguished:

(i) M and A are independent. This means that, whatever the scale a, the joint pdf factor-
izes:

Pa(M,A) = Pa(M)Pa(A) . (54)

In other words, the Hölder exponent h is statistically independent of the direction
θ = A+ π to which it is associated. This implies that the D(h) singularity spectrum is
decoupled from the angular information contained in Pa(A). If this angle pdf is flat, this
means that the rough surface under study displays isotropic scale invariance properties.
If, on the contrary, this pdf is a non uniform distribution on [0, 2π], this suggests that
some anisotropy is present in the analyzed image. The possible existence of privilegied
directions can then be revealed by investigating the correlations between the values of
A for different maxima lines. Furthermore, Pa(A) may evolve when varying the scale
parameter a. The way its shape changes indicates whether (and how) anisotropy is
enhanced (or weakened) when going from large scales to small scales. Even though we
are mainly interested in the scaling properties in the limit a→ 0+, the evolution of the
shape of Pa(A) across scales is likely to enlighten possible deep structural changes.

(ii) M and A are dependent. If equation (54) definitely does not apply, this means that
the rough surface under consideration is likely to display anisotropic scale invariance
properties. By conditioning the statistical analysis ofM to a given value of A, one can
then investigate the scaling properties of the conditioned partition function:

ZA(q, a) = ZA(0, a)
∫

dMMqPa(M|A),
∼ aτA(q) .

(55)

Then by Legendre transforming τA(q), one gets the singularity spectrum DA(h) condi-
tioned to the value of the angle A (= θ − π). The investigation of the A-dependence
of the singularity spectrum DA(h) can be rich of information concerning anisotropic
multifractal scaling properties.

Remark 3: There have been previous attempts in the literature to carry out anisotropic
multifractal analysis. In the context of geophysical (fracture and faulting) data analysis,
Ouillon et al. [239–241] have used an optimized anisotropic wavelet coefficient method
to detect and characterize the different levels of mineral organization via the changes of
statistical scale invariance. From a mathematical point of view, Ben Slimane [238] has
recently proposed a way to generalize the multifractal formalism to anisotropic self-similar
functions. His strategy consists in modifying the definition of the 2DWT so that anisotropic
zooming is operationally integrated in the optics of this mathematical microscope.
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4.4 Application of the 2D WTMM method to synthetic isotropic monofractal

and multifractal rough surfaces

Fractional Brownian surfaces

The generalization of Brownian motion to more than one dimension was first considered
by Levy [242]. The generalization of fBm follows along similar lines. A 2D fBm BH(x)
indexed by H ∈]0, 1[, is a process with stationary zero-mean Gaussian increments and
whose correlation function is given by [1, 22, 242]:

< BH(x)BH(y) >=
σ2

2

(

|x|2H + |y|2H − |x− y|2H
)

, (56)

where < . . . > represents the ensemble mean value. The variance of such a process is

var
(

BH(x)
)

= σ2|x|2H , (57)

from which one recovers the classical behavior var(B1/2(x)) = σ2|x| for Brownian motion
with H = 1/2. 2D fBm’s are self-affine processes that are statistically invariant under
isotropic dilations:

BH(x0 + λu)−BH(x0) w λH [BH(x0 + u)−BH(x0)] , (58)

where u is a unitary vector and w stands for the equality in law. The index H corresponds
to the Hurst exponent; the higher the exponent H, the more regular the fBm surface. But
since (58) holds for any x0 and any direction u, this means that almost all realizations of
the fBm process are continuous, everywhere non-differentiable, isotropically scale-invariant
as characterized by a unique Hölder exponent h(x) = H [1, 22, 125], ∀x. Thus fBm sur-
faces are the representation of homogeneous stochastic fractal functions characterized by
a singularity spectrum which reduces to a single point

D(h) = 2 if h = H ,
= −∞ if h 6= H .

(59)

By Legendre transforming D(h) according to (52), one gets the following expression for
the partition function exponent (51):

τ(q) = qH − 2 . (60)

τ(q) is a linear function of q, the signature of monofractal scaling, with a slope given by
the index H of the fBm.

We have tested the 2D WTMM method described in section 4.3 [231] on fBm surfaces
generated by the so-called fast Fourier transform filtering method [22, 27]. We have used this
particular synthesis method because of its implementation simplicity. Indeed it amounts to
a fractional integration of a 2D “white noise”and therefore it is expected to reproduce quite
faithfully the expected isotropic scaling invariance properties (58). We have investigated
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fBm’s for various values of the indexH. Here we report, for illustration, the results obtained
on 32 realizations of a 2D fBm process with H = 1/3. Along the lines of the numerical
implementation procedure described in section 4.2 [231], we have wavelet transformed
32 (1024 × 1024) images of BH=1/3 with an isotropic first-order analyzing wavelet. To
master edge effects, we then restrain our analysis to the 512 × 512 central part of the
WT of each image. In Fig. 13c is illustrated the computation of the maxima chains and
the WTMMM for an individual image at a given scale. In this figure is also shown the
convolution of the original image (Fig. 13a) with the isotropic gaussian smoothing filter
φ (39). According to the definition of the WTMM, the maxima chains correspond to well
defined edge curves of the smoothed image. The local maxima ofMψ along these curves are
located at the points where the sharpest intensity variation is observed. The corresponding
arrows clearly indicate that locally, the gradient vector points to the direction (as given by
Aψ) of maximum change of the intensity surface. When going from large to small scale, the
average distance between two nearest neighbour WTMMM decreases like a. This means
that the number of WTMMM and in turns, the number of maxima lines, proliferates across
scales like a−2. The corresponding WT skeleton is shown in Fig. 13e. As confirmed just
below, when extrapolating the arborescent structure of this skeleton to the limit a → 0+,
one recovers the theoretical result that the support of the singularities of a 2D fBm has a
dimension DF = 2, i.e., BH=1/3(x) is nowhere differentiable [1, 22, 242].

In Fig. 14 are reported the results of the computation of the τ(q) and D(h) spectra
using the 2D WTMM method described in section 4.3. As shown in Fig. 14a, for q ∈ [−4, 6],
the annealed average partition function Z(q, a) (over 32 images of B1/3(x)) display a well
defined scaling behavior over more than 3 octaves. When proceeding to a linear regression
fit of the data over the first two octaves, one gets the τ(q) spectrum (51) shown in Fig. 14c.
The data systematically fall on a straight line which is in remarkable agreement with
the theoretical τ(q) spectrum (60) with H = 1/3. As shown in Fig. 14d, it is therefore
not surprising that the D(h) spectrum obtained by Legendre transforming the τ(q) data
reduce to a single point D(h = H = 1/3) = 2.00± 0.02 (59).

In Fig. 15 are shown the pdfs Pa(M) =
∫

dAPa(M,A) and Pa(A) =
∫

dMPa(M,A),
for four different values of the scale parameter. As seen in Fig. 15a, Pa(M) is not a Gaussian
(in contrast to the pdf of the continuous 2D wavelet coefficients), but decreases very fast to
zero at zero as expected when using the WTMM method. The corresponding pdf’s Pa(A)
are represented in Fig. 15c. Pa(A) clearly does not evolve across scales. Moreover, except
some small amplitude fluctuations observed at the largest scale, Pa(A) = 1/2π is a flat
distribution as expected for statistically isotropic scale-invariant rough surfaces. The results
reported in Fig. 15e, not only corroborate statistical isotropy but they bring unambiguous
evidence for the independence of M and A (54). For two different scales, the pdf of M,
when conditionned by the argument A, is shown to be shape invariant.
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Fig. 13. Continuous WT of monofractal and multifractal synthetic rough surfaces. Fractional Brownian
rough surfaces: (a) A (1024× 1024) realization of a H = 1/3 fBm rough surface; (c) maxima chains defined by the
WTMM as computed at the scale a = 22σW ; the WTMMM (•) are defined by the local maxima of Mψ along the
chains; (e) the WT skeleton defined by the maxima lines obtained after linking the WTMMM detected at different
scales. Log-normal random 2D W-cascades: (b) A (1024 × 1024) rough surface generated using the log-normal
W-cascade model with the parameter values m = −0.35 ln 2 and σ2 = 0.03 ln 2; (d) maxima chains and WTMMM
as computed at the scale a = 23σW ; (f) same as in (d) but at the scale a = 2σW . In (c) and (d), the smoothed
image φb,a ? f is shown as a color coded background from black (min) to red (max). ψ is the first-order radially
symmetric wavelet shown in Fig. 11.



42 Arneodo et al.

Fig. 14. Determination of the τ(q) and D(h) multifractal spectra of fractional Brownian rough surfaces
with H = 1/3 (red circles) and log-normal random 2D W-cascades (green squares) using the 2D WTMM method.
(a) log2 Z(q, a) vs log2 a: B1/3(x). (b) log2 Z(q, a) vs log2 a: log-normal W-cascade with the same parameters as in
Fig. 13b. (c) τ(q) vs q; the solid lines correspond respectively to the theoretical spectra given by (60) and (61). (d)
D(h) vs h; the solid lines correspond respectively to the theoretical predictions given by (59) and (62). The analyzing
wavelet is the same as in Fig. 13. The reported results correspond to annealed averaging over 32 (1024 × 1024)
realizations.

2D random W-cascades

As originally introduced in Ref. [232], the concept ofW-cascade [102–106] (section 2.6) can
be generalized in 2D in order to generate synthetic multifractal functions of two variables. A
2D randomW-cascade is built recursively on the two-dimensional square grid of separable
wavelet orthogonal basis, involving only scales that range between a given large scale L
and the scale 0 (excluded). Thus the corresponding fractal function f(x) will not involve
scales greater than L. For that purpose, we will use compactly supported wavelets defined
by Daubechies [73]. In Fig. 13b is shown a rough surface generated with the log-normalW-
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Fig. 15. Pdf’s of the WTMMM coefficients as computed at the scales a = 1, 2, 4 and 8 (in σW units).
Fractional Brownian rough surfaces: (a) Pa(M) vs M; (c) Pa(A) vs A; (e) pdf’s of M when conditioned by A, at
the scale a = σW . Log-normal random 2D W-cascades: (b) Pa(M) vs M; (d) Pa(A) vs A; (f) pdf’s of M when
conditioned by A, at the scale a = 20.1σW . In (e) and (f) the different curves correspond to fixing A (mod π) to
0± π/8, π/4± π/8, π/2± π/8 and 3π/4± π/8. Same 2D WTMM computations as in Fig. 14.
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cascade model proposed in Ref. [232]. The multifractal spectra have the following analytical
expression:

τ(q) = − log2 < W q > −2 , ∀q ∈ R

= − σ2

2 ln 2
q2 − m

ln 2
q − 2 ,

(61)

and

D(h) = −(h+m/ ln 2)2

2σ2/ ln 2
+ 2 , (62)

which are reminiscent of (29) and (30) derived for 1D log-normal W-cascades. Let us
mention that (31) and (32) are slightly modified in 2D (indeed one has simply to replace
σ2 by 2σ2 in these formula).

In Figs. 13, 14 and 15, we mainly report results obtained with the first-order radially
symmetric analyzing wavelets shown in Fig. 11. Let us point out that quite robust results
are obtained with the third-order analyzing wavelet. In Figs. 13d and 13f is illustrated the
computation of the maxima chains and the WTMMM for an individual image (Fig. 13b)
of a multifractal rough surface generated with the log-normal W-cascade model described
in Ref. [232]. The model parameters are m = −0.35 ln 2 and σ2 = 0.03 ln 2. From the
WTMMM defined on these maxima chains, one constructs the WT skeleton according to
the procedure described in sections 4.2 and 4.3. From the WT skeletons of 32 (1024×1024)
images like the one in Fig. 13b, one computes the annealed average of the partition functions
Z(q, a). As shown in Fig. 14b, when plotted versus the scale parameter a in a logarithmic
representation, these annealed average partition functions display a well defined linear
behavior over a range of scales of about 4 octaves (i.e., σW . a . 16σW , where σW = 13
pixels). Let us point out that scaling of quite good quality is found for a rather wide range
of values of q: −6 . q . 8. When processing to a linear regression fit of the data over
the first four octaves, one gets the τ(q) spectrum (■) shown in Fig. 14c. For the range of
investigated q values, the numerical data are in remarkable agreement with the theoretical
nonlinear τ(q) spectrum given by (61). Similar quantitative agreement is observed on the
D(h) singularity spectrum in Fig. 14d. This is the quantitative demonstration that the
2D WTMM method is able to resolve mulifractality. From the theoretical spectra, the
multifractal rough surfaces under study, display intermittent fluctuations corresponding
to Hölder exponent values ranging from hmin = 0.005 to hmax = 0.700. Unfortunately, to
capture the strongest and weakest singularities, one needs to compute the τ(q) spectrum
for very large values of |q|. This requires the processing of many more images of much
larger size, which is out of our current computer capabilities. Note that with the statistical
sample studied here, one has D(h(q = 0) = 0.35) = 2.00±0.02, which allows us to conclude
that the rough surfaces under consideration are singular everywhere.
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Remark 4: Note that we have chosen on purpose the parameters m and σ2 so that the
spectral exponent β = 4− τ(2) = 2.66 be the same for the B1/3 monofractal rough surfaces
and the log-normal W rough surfaces. The results reported in this section show that the
2D WTMM method succeeds in distinguishing monofractal and multifractal surfaces that
exhibit exactly the same density spectrum power law decay.

From the construction rule of these synthetic log-normal rough surfaces [232, 233], the
multifractal nature of these random functions is expected to be contained in the way the
shape of the WT modulus pdf Pa(M) evolves when varying the scale parameter a, as shown
in Fig. 15b. Indeed the joint pdf Pa(M,A) is expected to factorize, as the signature of the
implicit decoupling ofM and A in the construction process. This decoupling is numerically
retrieved in Fig. 15f, where, for two different scales, the pdf of M, when conditioned by
the argument A, is shown to be shape invariant. Moreover, as seen in Fig. 15d, Pa(A)
does not exhibit any significant change when increasing a, except some loss in statistical
convergence at large scales due to the rarefaction of the maxima lines. Let us point out
that, even though Pa(A) looks globally rather flat, one can notice some small amplitude
almost periodic oscillations at the smallest scales which reflects the existence of privileged
directions in the wavelet cascading process. These oscillations are maximum for A = 0,
π/2, π and 3π/2, as the witness to the square lattice anisotropy underlying the 2D wavelet
tree decomposition.

5 Application of the 2D WTMM method to high-resolution

satellite images of cloud structure

The problematic of nonlinear variability over a wide range of scales has been considered for
a long time with respect to the highly intermittent nature of turbulent flows in fluid dy-
namics [15, 67]. Special attention has been paid to their asymptotic and possibly universal
behavior when the dissipation length goes to zero, i.e., when the Reynolds number goes
to infinity. Besides wind-tunnel and laboratory (grid, jet, ...) experiments, the atmosphere
is a huge natural laboratory where high Reynolds number (fully developed) turbulent dy-
namics can be studied. Clouds, which are at the source of the hydrological cycle, are the
most obvious manifestation of the earth’s turbulent atmospheric dynamics [16, 243–245].
By modulating the input of solar radiation, they play a critical role in the maintenance
of the earth’s climate [246]. They are also one of the main sources of uncertainty in cur-
rent climate modeling [247], where clouds are assumed to be homogeneous media lying
parallel to the earth’s surface; at best, a linear combination of cloudy and clear portions
according to cloud fraction is used to account for horizontal inhomogeneity when predict-
ing radiative properties. During many years, the lack of data hindered our understanding
of cloud microphysics and cloud-radiation interactions. Nowadays, it is well-recognized
that clouds are variable in all directions and that fractal [243, 244, 248–253] and multifrac-
tal [16, 245, 254–256] concepts are likely to be relevant to the description of their complex
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3D geometry. Until quite recently, the internal structure of clouds was probed by balloons or
aircrafts that penetrated the cloud layer, revealing an extreme variability of 1D cuts of some
cloud fields [256–264]. In particular, in situ measurements of cloud liquid water content
(LWC) were performed during many intensive field programs (FIRE [265], ASTEX [266],
SOCEX [267] ...). Indeed, during the past fifteen years, vast amounts of data on the distri-
bution of atmospheric liquid water from a variety of sources were collected and analyzed
in many different ways. All these data contain information on spatial and/or temporal cor-
relations in cloudiness, enabling the investigation of scale invariance over a range from a
few centimeters to hundred of kilometers. An attractive alternative to in situ probing is to
use high-resolution satellite imagery that now provides direct information about the fluc-
tuations in liquid water concentration in the depth of clouds [244, 249, 251, 253, 268–273].
These rather sophisticated remote sensing systems called “millimeter radars” are actually
sensitive not only to precipating rain drops but also to suspended cloud droplets. Spectral
analysis of the recorded 2D radiance field [268–273] confirms previous 1D findings that
make it likely that cloud scenes display structures over a wide range of scales.

One has to give credit to Lovejoy and co-workers [131, 133, 135, 143, 144, 254, 255, 274,
275], for applying the multifractal description to atmospheric phenomena. Using the trace
moment and double trace moment techniques [133, 135, 274, 275] they have brought ex-
perimental evidence for multiple scaling (or in other words, the existence of a contin-
uum of scaling exponent values) in various geophysical fields. More recently, Davis and
co-workers [245, 256, 264] have used the structure function method to study LWC data
recorded during ASTEX and FIRE programs. Both these analyses lead to the conclusion
that the internal marine stratocumulus (Sc) structure is multifractal over at least three
decades in scales. Similar multifractal behavior has been reported by Wiscombe et al [273]
when analyzing liquid water path (LWP) data (i.e., column integrated LWC), from the At-
mosperic Radiation Measurement (ARM) archive. Even though all these studies seem to
agree, at least as far as their common diagnostic of multifractal scaling of the cloud struc-
ture is concerned, they all address 1D data. To our knowledge, the stucture function method
has been also applied to 1D cuts of high-resolution satelitte images [269, 276], but we are
not aware of any results coming out from a specific 2D analysis. Our goal here is to take
advantage of the 2D WTMM method to carry out a multifractal analysis of high-resolution
satellite images of cloudy scenes [229, 230, 233, 277]. Beyond the issue of improving statisti-
cal characterization of in situ and remotly sensed data, there is a most challenging aspect
which consists in extracting structural information to constraint stochastic cloud models
which in turn will be used for radiative transfer simulations [245, 252, 254, 269, 278–284].
Then by comparing the multifractal properties of the numerically generated artificial ra-
diation fields with those of actual measurements, one can hope to achieve some degree of
closure.

5.1 Landsat data of marine stratocumulus cloud scenes

Over the past fifteen years, Landsat imagery has provided the remote sensing community
at large with a very attractive and reliable tool for studying the Earth’s environment [245,
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249, 251–253, 268–272, 285, 286]. One of the main advantages of high-resolution satellite
imagery is its rather low effective cost as compared to outfitting and flying research aircraft.
Moreover this instrument is well calibrated and it offers the possibility to reach unusual
high spatial, spectral and radiometric resolutions [269, 286]. Mainly two types of statistical
analysis have been applied so far to Landsat imagery: spectral analysis of the 2D radiance
field [268–272, 286] and joint area and perimeter distributions for ensembles of individual
clouds [249, 251–253] defined by some threshold in radiance. One of the most remarkable
properties of Landsat cloud scenes is their statistical “scale-invariance” over a rather large
range of scales, which justifies why fractal and multifractal concepts have progressively
gained more acceptance in the atmospheric scientist community [16, 245].

Off all cloud types, marine stratocumulus (Sc) are without any doubt the ones which
have attracted the most attention, mainly because of their first-order effect on the Earth’s
energy balance [16, 244, 245, 286, 287]. Being at once very persistent and horizontally ex-
tented, marine Sc layers carry considerable weight in the overall reflectance (albedo) of
the planet and, from there, command a strong effect on its global climate [246]. Further-
more, with respect to climate modeling [247] and the major problem of cloud-radiation
interaction [245, 254, 268, 269, 278–280, 282, 288], they are presumably at their simplest in
marine Sc which are relatively thin (∼ 300-500 m), with well-defined (quasi-planar) top
and bottom, thus approximating the plane-parallel geometry where radiative transfer the-
ory is well developed [244, 254, 269, 279, 280, 282]. However, because of its internal homo-
geneity assumption, plane-parallel theory shows systematic biases in large-scale average
reflectance [280, 289] relevant to Global Circulation Model (CGM) energetics and large
random errors in small-scale values [282, 290] relevant to remote-sensing applications. In-
deed, marine Sc have huge internal variability [256, 264], not necessarily apparent to the
remote observer (see Fig. 16a).

In the next section, we challenge previous analysis [249, 251–253, 268–272, 285, 286] of
Landsat imagery using the 2D WTMM methodology [229, 230, 277] described in section 4.
Our specific goal will be to improve statistical characterization of the highly intermittent
radiance fluctuations of marine Sc, a prerequisite for developing better models of cloud
structure. For that purpose, we analyze a (' 196×168 km2) original cloudy Landsat 5 scene
captured with the TM camera (1 pixel = 30 m) in the 0.6-0.7 µm channel (i.e. reflected solar
photons as opposed to their counterparts emitted in the thermal infrared) during the first
ISCCP (International Satellite Cloud Climatology Project) Research Experiment (FIRE)
field program, which took place over the Pacific Ocean off San Diego in summer 1987. For
computational convenience, we actually select 32 overlapping 1024×1024 pixels2 subscenes
in this cloudy region. The overall extend of the explored area is about 7840 km2 [277].
Fig. 16a shows a typical (1024 × 1024) portion of the original image where the eight-bit
grey scale coding of the quasi-nadir viewing radiance clearly reveals the presence of some
anisotropic texture induced by convective structures which are generally aligned to the
wind direction.
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Fig. 16. 2D WT analysis of a Landsat image of marine Sc clouds captured at l = 30m resolution on July
7 1987, off the coast of San Diego (CA) [265]. (a) 256 grey-scale coding of a (1024× 1024) portion of the original
radiance image. In (b) a = 22.9σW , (c) a = 21.9σW and (d) a = 23.9σW where (σW = 13 pixels ' 390m), are
shown the maxima chains; the local maxima of Mψ along these chains are indicated by (•) from which originates
an arrow whose length is proportional to Mψ and its direction (with respect to the x-axis) is given by Aψ ; only
the central (512× 512) part delimited by a dashed square in (a) is taken into account to define the WT skeleton.
In (b), the smoothed image φb,a ? I is shown as a grey-scale coded background from white (min) to black (max).
ψ(x) is the first-order radially symmetric analyzing wavelet shown in Fig. 11.

5.2 WTMM multifractal analysis of Landsat images of stratocumulus

We systematically follow the numerical implementation procedure previously used in
section 4.4 for synthetic rough surfaces. We first wavelet transform the 32 overlapping
(1024× 1024) images, cut out of the original image, with the first-order (nψ = 1) radially
symmetric analyzing wavelet defined in Fig. 11. From the WT skeleton defined by the
WTMMM, we compute the partition functions from which we extract the τ(q) and D(h)
multifractal spectra as explained in section 4.3. We systematically test the robustness of our
estimates with respect to some change in the shape of the analyzing wavelet, in particular
when increasing the number of zero moments.



Wavelet based multifractal formalism 49

Numerical computation of the multifractal τ(q) and D(h) spectra

In Fig. 16 is illustrated the computation of the maxima chains and the WTMMM for
the marine Sc sub-scene. After linking these WTMMM across scales, one constructs the
WT skeleton from which one computes the partition functions Z(q, a) (50). As reported
in Fig. 17a, the annealed average partition functions (•) display some well-defined scaling
behavior over the first three octaves, i.e. over the range of scales 390 m . a . 3120 m,
when plotted versus a. Indeed the scaling deteriorates progressively from the large scale
side when one goes to large values of |q| & 3. As discussed in Ref. [277], besides the
fact that we are suffering from insufficient sampling, the presence of localized Dirac like
structures is likely to explain the fact that the observed cross-over to a steeper power-law
decay occurs at a smaller and a smaller scale when one increases q > 0. Actually for q & 3,
the cross-over scale a∗ . 1200 m becomes significantly smaller than the so-called integral
scale which is approximately given by the characteristic width λ w 5-6 km of the convective
rolls (Fig. 16a). When processing to a linear regression fit of the data in Fig. 17a over the
first octave and a half (in order to avoid any bias induced by the presence of the observed
cross-over at large scales), one gets the τ(q) spectrum (•) shown in Fig. 17b. In contrast to
the fBm rough surfaces studied in section 4.4, this τ(q) spectrum unambiguously deviates
from a straight line. When Legendre transforming this nonlinear τ(q) curve, one gets the
D(h) singularity spectrum reported in Fig. 17c. Its characteristic single humped shape
over a finite range of Hölder exponents is a clear signature of the multifractal nature of the
marine Sc radiance fluctuations.

In Fig. 17 are also shown for comparison the results (◦) obtained when applying the
2D WTMM method with a third-order (nψ = 3) radially symmetric analyzing wavelet
(the smoothing function φ being the isotropic 2D mexican hat). As seen in Fig. 17a, the
use of a wavelet which has more zero moments seems to somehow improve scaling. For
the range of q-values investigated, the cross-over scale turns out to be rejected at a larger
scale, enlarging by some amount the range of scales over which scaling properties can be
measured, especially for the largest values of |q|. The fact that one improves scaling when
increasing the order of the analyzing wavelet suggests that perhaps some smooth behavior
unfortunately deteriorates our statistical estimate of the multifractal spectra of the original
Landsat radiance image. Let us recall that, as explained in section 4.2, smooth C∞ behavior
may give rise to maxima lines along which Mψ ∼ anψ (see Fig. 12); hence larger nψ,
smaller is the overall contribution of those “spurious” maxima lines in the partition function
summation over the WT skeleton. As seen in Fig. 16a, the anisotropic texture induced by
the convective streets or rolls might well be at the origin of the relative lack of well defined
scale invariance. When looking at the corresponding τ(q) spectrum (◦) extracted from the
data in Fig. 17b, one gets quantitatively the same estimates for q & −1. For more negative
values of q, the data obtained with the third-order analyzing wavelet clearly depart from
the previous estimates with the first-order wavelet. The slope of the new τ(q) spectrum
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Fig. 17. Determination of the τ(q) and D(h) spectra of radiance Lansat images of marine Sc. The 2D
WTMM method is used with either a first-order (•) or a third-order (◦) radially symmetric analyzing wavelet (see
Fig. 11). (a) log2 Z(q, a) vs log2 a; the solid lines correspond to linear regression fits of the data over the first and
a half octave. (b) τ(q) vs q obtained from a linear regression fit of the data in (a). (c) D(h) vs h, after Legendre
transforming the τ(q) curve in (b). In (b) and (c), the solid lines correspond to the theoretical multifractal spectra
for the log-normal W-cascades with parameter values m = −0.38 ln 2 and σ2 = 0.07 ln 2 ((61) and (62)). The
D(h) singularity spectrum of velocity (dotted line) and temperature (dashed line) fluctuations in fully developed
turbulence are shown for comparaison in (c).

is somehow weakened which implies, from the Legendre transform properties, that the
corresponding values of h(q) = ∂τ/∂q are reduced. The computation of theD(h) singularity
spectrum (◦) in Fig. 17c enlightens this phenomenom: while the increasing left-hand branch
(which corresponds to the strongest singularities) of the D(h) curve appears to be quite
robust with respect to the choise of ψ, the decreasing right-hand branch (associated to the
weakest singularities) is modified when increasing the number of zero moments of ψ. As
shown in Figs. 17b and 17c, the τ(q) spectrum as well as the D(h) spectrum data, are very
well fitted by the theoretical quadratic spectra of log-normal randomW-cascades (Eqs (61)
and (62)). However, with the first-order analyzing wavelet, the best fit is obtained with the
parameter values m = −0.38 ln 2 = −0.263 and σ2 = 0.07 ln 2 = 0.049, while for the third-
order wavelet these parameters take slightly different values, namely m = −0.366 ln 2 =
−0.254 and σ2 = 0.06 ln 2 = 0.042. The variance parameter σ2 which characterizes the
intermittent nature of marine Sc radiance fluctuations is therefore somehow reduced when
going from nψ = 1 to nψ = 3. Actually, it is the lack of statistical convergence because
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of insufficient sampling which is the main reason for this uncertainty in the estimate of
σ2 [277]. As previously experienced in Ref. [232] for synthetic multifractal rough surfaces,
an accurate estimate of the exponents τ(q) for q . −3 requires more than 32 (1024×1024)
images. With the statistical sample of Landsat images we have at our disposal, one gets
D(h(q = 0) = 0.37 ± 0.02) = 2.00 ± 0.01, which is a strong indication that the radiance
field is singular everywhere. From the estimate of τ(q = 2) = −1.38 ± 0.02; one gets the
following estimate of the spectral exponent: β = τ(2) + 4 = 2.62± 0.02, i.e., a value which
is in good agreement with previous estimates [257–261, 263, 268–272, 286].

WTMMM probability density functions

This sub-section is mainly devoted to the analysis of the joint probability distribution func-
tion Pa(M,A) (see section 4.3) as computed from the WT skeletons of the 32 (1024×1024)
radiance images with the first-order radially symmetric analyzing wavelet (nψ = 1).
In Figs. 18a and 18b are respectively shown the pdf’s Pa(M) =

∫

dAPa(M,A) and
Pa(A) =

∫

dMPa(M,A), for three different values of the scale parameter a = 20.3σW
(480 m), 21.3σW (960 m) and 22.3σW (1920 m). First let us focus on the results shown
in Fig. 18b for Pa(A). This distribution is clearly scale dependent with some evidence
of anisotropy enhancement when going from small to large scales, in particular when one
reaches scales which become comparable to the characteristic width of the convective struc-
tures (i.e., a few kilometers wide). Two peaks around the values A w −π/6 and 5π/6 be-
come more and more pronounced as the signature of a privilegied direction in the analyzed
images. As one can check from a visual inspection of Fig. 16a, this direction is nothing but
the perpendicular to the mean direction of the convective rolls that are generally aligned to
the wind direction. This is another clear indication that, at large scales, the WT microscope
is sensitive to the convective roll texture, a rather regular modulation superimposed to the
background radiance fluctuations [230, 277]. Another important message which comes out
from our analysis is illustrated in Figs. 18c and 18d. When conditioning the pdf of M
by the argument A, the shape of this pdf is shown to be independent of the considered
value of A, as long as the value of the scale parameter a remains small as compared to
the characteristic width of the convective structures. The observation that the joint prob-
ability distribution actually factorizes, i.e., satisfies (54), is the signature that M and A
are likely to be independent [230, 277]. This implies that all the multifractal properties
of the marine Sc radiance fluctuations are contained in the way the shape of the pdf of
M evolves when one decreases the scale parameter a. As shown in Fig. 18a, for any scale
significantly smaller than the integral scale (∼ 5-6 km, as given by the characteristic width
of the convective structures) all the data points fall, within a good approximation, on a
log-normal curve [230, 277].
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Fig. 18. Pdf’s of the WTMMM coefficients of 32 (1024 × 1024) radiance Landsat images as computed with
the first-order radially symmetric analyzing wavelet. (a) Pa(M) vs M; (b) Pa(A) vs A; the symbols correspond
to the following scales a = 20.3σW = 480m (•), 21.3σW = 960m (◦) and 22.3σW = 1920m (×). Pdf’s of M when
conditioned by A at the scales (c) a = 20.3σW = 480m and (d) a = 21.3σW = 960m. The different symbols in (c)
and (d) correspond to fixing A (mod π) to 0± π/8 (◦), π/4± π/8 (¤), π/2± π/8 (M) and 3π/4± π/8 (■).

5.3 Comparative WTMM multifractal analysis of Landsat radiance field and

velocity and temperature fields in fully developed turbulence

Let us point out that a similar 1D WTMM analysis of the velocity fluctuations in high
Reynolds number turbulence has come to conclusions very close to those of the present
study [87, 102–104, 291]. Besides the presence of rare localized Dirac like structures that
witness to the probing of vorticity filaments [77, 94, 96, 102], the multifractal nature of tur-
bulent velocity is likely to be understood in terms of a log-normal cascading process which
is expected to be scale-invariant in the limit of very high Reynolds numbers [87, 291]. In
Fig. 17c are shown for comparison the results obtained for the D(h) singularity spectrum of
the radiance Landsat images together with the D(h) data extracted from the 1D analysis
of a turbulent velocity signal recorded at the Modane wind tunnel (Rλ ' 2000) [87, 104]
(indeed D(h) + 1 is represented for the latter in order to compare 1D to 2D data). The
turbulent velocity D(h) spectrum significantly differs from the results obtained for the ma-
rine Sc cloud. They have a common feature, i.e., the Hölder exponent the most frequently
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encountered in the radiance field h = m/ ln 2 = h(q = 0) = ∂τ/∂q|q=0 = 0.38 ± 0.01 is
undistinguishable from the corresponding exponent h = h(q = 0) = 0.39 ± 0.01 found for
the turbulent velocity field. Note that these values are significantly larger than the theoret-
ical value h = 1/3 predicted by Kolmogorov in 1941 [128] to account for the observed k−5/3

power-spectrum behavior. The main difference comes from the intermittency parameter
which is much stronger for the cloud, σ2/ ln 2 = 0.07±0.01 (nψ = 1) or σ2/ ln 2 = 0.06±0.01
(nψ = 3) than for the turbulent velocity, σ2/ ln 2 = 0.036±0.004. This is the signature that
the radiance field is much more intermittent than the velocity field: the D(h) singularity
spectrum for the former is unambiguously wider than the corresponding spectrum for the
later. For the sake of comparison, we have also reported in Fig. 17c, the multifractal D(h)
spectrum of the temperature fluctuations recorded in a Rλ = 400 turbulent flow [292].
The corresponding single humped curve is definitely much wider than the velocity D(h)
spectrum and it is rather close to the data corresponding to the marine Sc radiance field.
It is well recognized however that liquid water is not really passive and that its identifica-
tion with a passive component in atmospheric dynamics offers limited insight into cloud
structure since, by definition, near-saturation conditions prevail and latent heat produc-
tion affects buoyancy [293]. So cloud microphysical processes are expected to interact with
the circulation at some, if not all, scales [294]. Nevertheless, our results in Fig. 17c tell us
that from a multifractal point of view, the intermittency captured by the Landsat satellite
looks statistically equivalent to the intermittency of a passive scalar in fully-developed 3D
turbulence. The fact that the internal structure of Sc cloud somehow reflects some statis-
tical properties of atmospheric turbulence is not such a surprise in this highly turbulent
environment. The investigation of different sets of Landsat data is urgently required in
order to test the degree of generality of the results reported in this first WTMM analysis
of high-resolution satellite images. In particular, one may wonder up to which extend the
marine Sc Landsat data collected off the coast of San Diego on July 7, 1987 under specific
observation conditions, actually reflect the specific internal structure of Sc clouds. Work in
this direction is currently in progress.

Finally, with respect to the issue of cloud modeling, it comes out quite naturally from
the WTMM analysis of marine Sc Landsat data, that the 2D random W-cascade models
introduced in Refs. [232, 233], are much more realistic hierarchical models than commonly
used multifractal models like the fractionally integrated singular cascade [133, 135, 274]
or the bounded cascade [287, 295] models. We are quite optimistic in view of using the
log-normal W-cascade models with realistic parameter values for radiation transfer sim-
ulations. To our opinion, random W-cascade models are a real breakthrough, not only
for the general purpose of image synthesis, but more specifically for cloud modeling. It
is likely that better cloud modeling will make further progress in our understanding of
cloud-radiation interaction possible.
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6 Beyond multifractal analysis with wavelet-based space-scale

correlations functions: revealing a causal information cascade

in stock market data

6.1 Space-scale correlation functions from wavelet analysis

Correlations in multifractals have already been experienced in the literature [296–298].
However, all these studies rely upon the computation of the scaling behavior of some
partition functions involving different points; they thus mainly concentrate on spatial cor-
relations of the local singularity exponents. The approach developed in Ref. [86] is different
since it does not focus on (nor suppose) any scaling property but rather consists in studying
the correlations of the logarithms of the amplitude of a space-scale decomposition of the
signal. For that purpose, the WT is a natural tool to perform space-scale analysis. More
specifically, if χ(x) is a bump function such that ||χ||1 = 1, then by taking

ε(x, a) = a−2

∫

χ((x− y)/a)|Tψ[f ](y, a)|2dy, (63)

one has:

||f ||22 =

∫ ∫

ε(x, a)dx da , (64)

and thus ε(x, a) can be interpreted as the local space-scale energy density of the considered
signal f [299]. Since ε(x, a) is a positive quantity, we can define the magnitude of the field
f at point x and scale a as:

ω(x, a) =
1

2
ln ε(x, a) . (65)

Our aim in this section, is to show that a cascade process can be studied through the
correlations of its space-scale magnitudes [86]:

C(x1, x2, a1, a2) = ω̃(x1, a1)ω̃(x2, a2) , (66)

where the overline stands for ensemble average and ω̃ for the centered process ω − ω.

6.2 Analysis of random W-cascades using space-scale correlation functions

As discussed in section 2.6, cascade processes can be defined in various ways. Periodic
wavelet orthogonal bases [70, 73] provide a general framework in whichW-cascades can be
constructed easily [102–106]. Let us consider the following wavelet series:

f(x) =
+∞
∑

j=0

2j−1
∑

k=0

cj,kψj,k(x) , (67)
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where the set {ψj,k(x) = 2j/2ψ(2jx − k)} is an orthonormal basis of L2([0, L]) and the
coefficients cj,k correspond to the WT of f at scale a = L2−j (L is the “integral” scale that
corresponds to the size of the support of ψ(x)) and position x = ka. The above sampling of
the space-scale half-plane defines a dyadic tree [70, 73]. If one indexes by a dyadic sequence
{ε1....εj} (εk = 0 or 1) each of the 2j nodes at depth j of this tree, the cascade is defined
by the multiplicative rule: cj,k = cε1...εj = c0

∏j
i=1Wεi . The law chosen for the weights

W determines the nature of the cascade and the multifractal (regularity) properties of
f [105, 106]. From the above multiplicative structure (Fig. 19), if one assumes that there
is no correlation between the weights at a given cascade step, then it is easy to show
that for ap = L2−jp and xp = kpap (p = 1 or 2), the correlation function (66) is nothing
but the variance V (j) of ln cj,k =

∑

lnWεi , where (j, k) is the deepest common ancestor
to the nodes (j1, k1) and (j2, k2) on the dyadic tree [86, 105]. This ultrametric structure
of the correlation function shows that such a process is not stationary. However, we will
generally consider uncorrelated consecutive realizations of length L of the same cascade
process, so that, in good approximation, C depends only on the space lag ∆x = x2 − x1

and one can replace ensemble average by space average. In that case, C(∆k, j1, j2) =
〈C(k1, k1 +∆k, j1, j2)〉 can be expressed as [86, 105]:

C(∆k, j1, j2) = 2−(j−n)

j−n
∑

p=1

2j−n−pV (j − n− p) , (68)

where j = sup(j1, j2) and n = log2∆k.
Let us illustrate these features on some simple case of random W-cascades (e.g. log-

normal cascades) [102–106]. As in classical cascades, at each step of the cascade, on chooses
i.i.d. random variables lnWεi of variance σ

2. Then V (j) = σ2j and it can be established [86,
105] that, for sup(a1, a2) ≤ ∆x < L,

C(∆x, a1, a2) = σ2

(

log2(
L

∆x
)− 2 + 2

∆x

L

)

. (69)

Thus, the correlation function decreases very slowly, independently of a1 and a2, as a
logarithm function of ∆x. This behavior is illustrated in Figs 21a and 21b where a log-
normal cascade (Fig. 20a) has been constructed using Daubechies compactly supported
wavelet basis (D-5) [73]. The correlation functions of the magnitudes of f(x) have been
computed as described above (66) using a simple box function for χ(x). Let us note that all

the results reported in this section concern the increments (we use ψ
(1)
(0)) of the considered

signal and that we have checked that they are actually independent of the specific choice of
the analyzing wavelet ψ

(n)
(m) (Fig. 2). In Fig. 21a are plotted the “one-scale” (a1 = a2 = a)

correlation functions for three different scales a = 4, 8 and 32. One can see that, for
∆x > a, all the curves collapse to a single one, which is in perfect agreement with the
expression (69): in semi-log-coordinates, the correlation functions decrease almost linearly
(with slope σ2) up to the integral scale L that is of order 216 points. In Fig. 21b are
displayed these correlation functions when the two scales a1 and a2 are different. One can
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Fig. 19. Sketch of the construction rule of a W-cascade. The wavelet coefficients {cj,k}j,k lie on a dyadic
grid. At each scale aj = 2−j , the grid displays 2j coefficients with abscissa xj,k = 2−jk. The value of the wavelet
coefficient cj,2k (resp. cj,2k+1) is obtained from the value of the wavelet coefficient cj−1,k by multiplying it by

W
(l)
j−1,k (resp. W

(r)
j−1,k) where W

(ε)
j−1,k are i.i.d. real valued random variables.

check that, as expected, they still do not depend on the scales provided ∆x ≥ sup(a1, a2);
moreover they are again very well fitted by the above theoretical curve (except at very
large ∆x where finite size effects show up). The linear behavior of C(∆x, a1, a2) vs ln(∆x)
is characteristic for “classical” scale-invariant cascades for which the random weights are
uncorrelated [86, 87, 105].

6.3 Distinguishing “multiplicative” from “additive” processes

The two previous examples illustrate the fact that magnitudes in random cascades are
correlated over very long distances. Moreover, the slow decay of the correlation functions
is independent of scales for large enough space lags (∆x > a). This is reminiscent of
the multiplicative structure along a space-scale tree. These features are not observed in
“additive” models like fBm’s (section 2.6) whose long-range correlations originate from the
sign of their variations rather than from the amplitudes. In Figs 21a and 21b are plotted the
correlation functions of an “uncorrelated” log-normal model constructed using the same
parameters as in the first example but without any multiplicative structure (the coefficients
cj,k have, at each scale j, the same log-normal law as before but are independent). Let us
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Fig. 20. Financial time-series as compared to synthetic multifractal signals: (a) Realization of a random
function generated by a log-normal W-cascade using the “Daubechies 5” compactly supported orthogonal wavelet
basis. The law of ln |W | is Gaussian with mean m = −H ln 2 = −0.6 ln 2 and variance σ2 = 0.02 ln 2 = 0.0077. (b)
“White noise” version of the log-normal W-cascade realization shown in (a) after randomly shuffling the wavelet
coefficients at each scale j. (c) Time evolution of lnP (t), where P (t) is the S&P 500 index, sampled with a time
resolution δt = 5 min in the period October 1991 – February 1995. The data have been preprocessed in order to
remove “parasitic” daily oscillatory effects. (d) Same as in (c) but after having randomly shuffled the increments
of the signal in (c).

note that from the point of view of both the multifractal formalism and the increment pdf
scale properties, the “uncorrelated” (Fig. 20b) and “multiplicative” (Fig. 20a) log-normal
models are undistinguishable since their one-point statistics at a given scale are identical.
As far as the magnitude space-scale correlations are concerned, the difference between the
cascade and the other models is striking: for ∆x > a, the magnitudes of the “white noise”
log-normal model are found to be uncorrelated. Let us emphasize that similar uncorrelated
behavior is observed for fBm’s and Levy processes [86, 105]. For their ability to reveal
the existence of a multiplicative hierarchical structure underlying fractal landscapes or
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Fig. 21. Space-scale correlation functions C(t, t +∆t, a, a′). Log-normal random W-cascade: (a) “one-scale”
correlation functions (a = a′) for a = 4 (◦), 8 (×) and 32 (M); (b) “two-scale” correlation functions for a = 4,
a′ = 8 (◦), a = 8, a′ = 32 (×) and a = 4, a′ = 32 (M); the solid curves correspond to similar computations performed
on the “white noise” log-normal W-cascade realizations. S&P 500 index: (c) “one-scale” correlation functions of
the log-volatility for various scales a corresponding to a = 30 (◦), 120 (×) and 480 (M) minutes; (d) “two-scale”
correlation functions for various pairs of scales corresponding to a = 30, a′ = 120 (◦), a = 120, a′ = 480 (×) and
a = 30, a′ = 480 (M) in mn units; the solid curves correspond to similar computations performed on the randomly
shuffled increment version of the S&P 500 index.

turbulent signals, the wavelet-based space-scale correlation functions are a definite step
beyond statistical multifractal analysis [86, 105].

6.4 Analysis of stock market data using space-scale correlations

Modelling accurately financial price variations is an essential step underlying portfolio
allocation optimization, derivative pricing and hedging, fund management and trading [19,
20, 300–302]. The observed complex price fluctuations guide and constraint our theoretical
understanding of agent interactions and of the organization of the market. The gaussian
paradigm of independent normally distributed price increments [303, 304] has long been
known to be incorrect with many attempts to improve it. Mandelbrot first proposed to use
Lévy distributions [23, 305], which are characterized by a fat tail decaying as a power law
with index between 0 and 2. His suggestion arrived at an epoch when Markovitz famous
mean-variance portfolio and Black-Scholes option pricing theories were being developed
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and widely applied. For main stream economists, the econometric nonlinear autoregressive
models with conditional heteroskedasticity (ARCH) [306] and their generalizations [307]
are more natural because they keep the volatility (standard deviation of price variations)
as the main descriptor. Recall that heteroskedasticity refers to the fact that the variance
(or volatility) is itself a stochastic variable (The exact definition is the following: when the
errors for different dates (or points) have different variances but are unrelated with each
other, then the errors are said to exhibit heteroskedasticity. If the variances are related,
the heteroskedasticity is said to be correlated). These models address volatility clustering
and partly the observed “fat tails” of distributions. The problem however is that these
GARCH models capture only imperfectly the volatility correlations and the fat tails of the
probability density function (pdf) of price variations. Moreover, as far as changes in time
scales are concerned, the so-called “aggregation” properties of these models are not easy
to control.

Recently, physicists have characterized more precisely the distribution of market price
variations [19, 20] and found that a power law truncated by an exponential provides a
reasonable fit at short time scales (less than one day), while at larger time scales the
distributions may cross over progressively to the Gaussian distribution which becomes
approximately correct for monthly and larger scale price variations [19, 20, 152, 308]. Alter-
natively, Ghashghaie et al. [309] proposed a “multiplicative” cascade model based on an
analogy between price dynamics and hydrodynamic turbulence. According to this model,
the return r at a given time scale a < T , is given by:

ra(t) ≡ lnP (t+ a)− lnP (t) = ε(t, a)1/2u(t) , (70)

where u(t) is some scale independent random variable, T is some coarse “integral” time
scale and ε(t, a)1/2 is the local r.m.s. of the return that can be multiplicatively decomposed,
for any decreasing sequence of scales {ai}i=0,..,n with a0 = T and an = a, as [87, 102–
105, 139, 310–312]

ε(t, a)1/2 =
n−1
∏

i=0

Wai+1,aiε(t, T )
1/2 . (71)

Equation (70) together with (71) show that the logarithm of the price is a multiplica-
tive process. But, this is different from the classical multiplicative processes studied in
finance literature, due to the tree-like structure of the correlations that are added by the
hierarchical construction of the multiplicands as discussed in section 6.2.

In turbulence the field ε is related to the energy while in finance ε is called the volatility.
Recall that the volatility has fundamental importance in finance since it provides a measure
of the amplitude of price fluctuations, hence of the market risk. Using ω(t, a) = 1

2
ln ε(t, a)

as a natural variable, if one supposes that Wai+1,ai depends only on the scale ratio ai+1/ai,
one can easily show, by choosing the ai as a geometric series Tsi (s < 1), that (71) implies
that the pdf of ω at scale a = Tsn can be written as:

Pa(ω) = (G⊗ns ⊗ PT )(ω) , (72)
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where ⊗ means the convolution product, Gs is the pdf of lnWsa,a and PT is the pdf
of ω(t, T ). The symbol G⊗ns ⊗ PT means that Gs has been convoluted with itself n times
before being convoluted with PT . Equation (72) is the exact reformulation (in log variables)
of the paradigm that Ghashghaie et al. [309] used to fit foreign exchange (FX) rate data at
different scales. Recall that it simply means that the distributions of the logarithm of the
absolute value of the price variations can be represented by a superposition of elementary
laws Gs. In this formalism, G can be proven to be the pdf of an infinitely divisible random
variable [102–105, 139, 310] (hence ε is called “log-infinitely divisible”). In Ref. [309], G is
assumed to be normal (the cascade is called “log-normal”) of variance −σ2 ln s.

Note that a cascade model does not necessarily imply the existence of correlations
between returns. As pointed out in Remark 1, if the exponent τ(2) = 0, then the power
spectral density behaves as 1/k2, i.e. as the power spectral density of Brownian motions.
This is why the 1/k2 shape of the power spectrum of financial time series cannot be invoked
as an argument against a cascade model [152, 313]. Moreover, as far as scaling properties of
price fluctuations are concerned, it is easy to deduce from (72) that, if H ln s is the mean
of Gs and −σ2 ln s its variance, then the maximum of the pdf of ε(t, a)1/2 varies as aH−σ

2/2

(H plays the same role as the Lévy index in TLF models [19, 20, 308] with H = 1/µ),
while its standard deviation behaves as a(H−σ2)/2. These features are observed in both
turbulence (H ' 0.38 and σ2 ' 0.03) [87, 102–105, 310–312] and finance (H ' 0.6 and
σ2 ' 0.02) [309]. Therefore, as advocated in Ref. [309], (72) accounts reasonably well for
one-point statistical properties of financial times series. However, because of the relatively
small statistics available in finance, it is very difficult to demonstrate that (72) is more
pertinent to fit the data than a “truncated Lévy” distribution [19, 20, 152, 308, 313].

At this point, let us emphasize that (71) imposes much more constraints on the statis-
tics than (72) that only refers to one point statistics. The main difference between the
multiplicative cascade model and the truncated Lévy additive model is that the former
predicts strong correlations in the volatility while the latter assumes no correlation. It is
then tempting to compute the correlations of the log-volatility ω(t, a) at different time
scales a [314]. In Fig. 20 are shown time series for which we study increment time cor-
relations (i.e. the WT coefficient correlation as computed with the analyzing wavelet

ψ
(1)
(0) shown in Fig. 2). Figure 20c represents the logarithm of the S&P 500 index. Fig-

ure 20d is the same as Fig. 20c but after having randomly shuffled the increments
lnP (i + 1) − lnP (i). In Figs 21c and 21d are reported the one-scale and two-scale cor-
relation functions Cω(∆t, a1, a2) = ω̃(t, a1)ω̃(t+∆t, a2) of the log-volatility as functions of
ln∆t. As compared to the absence of correlation found for the randomly shuffled S&P 500
signal, the S&P 500 index log-volatility clearly displays correlations that are well fitted by
an equation analogous to (69):

Cω(∆t, a1, a2) = σ2

(

log2(
T

∆t
)− 2 + 2

∆t

T

)

+ σ2
T , (73)

provided sup(a1, a2) ≤ ∆t < T , where σ2
T is the variance of ω(t, T ). One actually observes

in Fig. 21c a slow linear decay of the one-scale correlation coefficient with a slope σ2 '
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0.0077 (a value which can be obtained independently from the fit of the pdf’s), with
only one adjustable parameter T ' 3 months. Similar results are obtained on the two-
scale correlation functions in Fig. 21d. As expected from (73), all the data collapse on a
single curve which is nearly linear up to some integral time T of order 3 months, provided
∆t > sup(a1, a2).

Let us point out that volatility at large time intervals that cascades to smaller scales
cannot do so instantaneously. From causality properties of financial signals, the “infrared”
towards “ultraviolet” cascade must manifest itself in a time asymmetry of the cross-
correlation coefficients ρωa (∆t,∆a) = Cω(∆t, a, a + ∆a)/

√

Cω(0, a)Cω(0, a+∆a). In par-
ticular, one expects that ρωa (∆t,∆a) ≤ ρωa (−∆t,∆a) if ∆t > 0 and ∆a > 0. From the
observed nearly Gaussian properties of ω(t, a) [314], one can derive the following expres-
sion for the mean mutual information of the variables ω(t, a) and ω(t+∆t, a+∆a):

Ia(∆t,∆a) = −0.5 log2

(

1− (ρωa (∆t,∆a))
2
)

. (74)

Since the process is causal, this quantity can be interpreted as the information contained
in ω(t, a) that “propagates” to ω(t+∆t, a+∆a). In Fig. 22, we have computed Ia(∆t,∆a)
for the S&P500 index (Fig. 22c) and its randomly shuffled version (Fig. 22d) [314]. One can
see on the bottom right picture that there is no well defined structure that emerges from
the noisy background. Except in a small domain at small scales around ∆t = 0, the mutual
information is in the noise level as expected for uncorrelated variables. In contrast, two
features are clearly visible on the bottom left representation. First, the mutual information
at different scales is mostly important for equal times. This is not so surprising since there
are strong localized structures in the signal that are “coherent” over a wide range of scales.
The extraordinary new fact is the appearance of a non symmetric propagation cone of
information showing that the volatility a large scales influences causally (in the future) the
volatility at shorter scales. Although one can also detect some information that propagates
from past fine to future coarse scales, it is clear that this phenomenon is weaker than past
coarse/future fine flux. As compared to the symetric cone structure observed in Fig. 22a
for log-normal random W-cascades, the dissymetry observed in Fig. 22c in the mutual
information of the S&P 500 index is thus a clear demonstration of the pertinence of the
notion of causal cascade in market dynamics. Let us point out that similar feature are
found on FX rates and other stock market data.

There are several mechanisms that can be invoked to rationalize our observations,
such as the heterogeneity of traders and their different time horizon [315] leading to an
“information” cascade from large time scales to short time scales, the lag between stock
market fluctuations and long-run movements in dividends [316], the effect of the regular
release (monthly, quarterly) of major economic indicators which cascades to fine time scale.
Correlations of the volatility have been known for a while and have been partially modelled
by mixtures of distributions [317], ARCH/GARCH models [306] and their extensions [307].
However, as previously pointed out, because they are constructed to fit the fluctuations
at a given time interval, these models are not adapted to account for the above described
multi-scale properties of financial time series. We have performed the same correlation
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Fig. 22. The mutual information Ia(∆t,∆a) of the variables ω(t, a) and ω(t + ∆t, a + ∆a) is represented in the
(∆t,∆a) half-plane. The small scale a = 4 is fixed. The amplitude of Ia(∆t,∆a) is coded from black for zero values
to red for maximum positive values (“heat code”), independently at each scale lag ∆a. (a) Log-normal random
W-cascade; same parameters values as in Fig. 20a; (b) “white noise” version of the log-normal W-cascade; (c)
S&P 500 index; (d) randomly shuffled increment version of the S&P 500. Note that, for middle scale lag values the
maxima (red spots) of the mutual information in (a) and (c) are 2 orders of magnitude larger than the corresponding
maxima in (b) and (d) respectively. For the S&P 500, ∆a = 1 correspond to 5 minutes.

analysis for simulated GARCH(1,1) processes and obtained structureless pictures similar
to the one corresponding to the shuffled S&P500 in Fig. 22d. More recently, Muller et

al. [315] have proposed the HARCH model in which the variance at time t is a function of
the realized variances at different scales. By construction, this model captures the lagged
correlation of the volatility from the large to the small time scales. However, it does not
contain the notion of cascade and involves only a few time scales. Moreover, it suffers
from the same defficiencies as ARCH-type models concerning the difficulties to control
and interpret parameters at different scales. Let us also mention some recent work by
Mandelbrot et al. [318] that introduces and tests a multifractal model of asset prices. Their
key idea is to construct a subordinated Brownian motion using a multifractal trading time.
From simple arguments, one can show that there are strong similarities with the cascade
model approach advocated in this section.

Putting together the evidence provided by the logarithmic decay of the log-volatility
correlations and the volatility cascade from the infrared to the ultraviolet, we have revisited
the analogy with turbulence, albeit on the volatility and not on the price variations. Our
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main finding is the exhibition of this information cascading process: the fact that varia-
tions of prices over a few month scale influence in the future the daily price variations is
extraordinarily rich of consequences. This is not so only for the fundamental understand-
ing of the nature of financial markets but also, and maybe more important, for practical
applications. Indeed, the nature of the correlations that are implied by this cascade across
scales, has profound implications on the market risk, a problem of upmost concern for all
financial institutions as well as individuals. In particular, these correlations are likely to
have strong consequences on derivative pricing and hedging.

7 Conclusion

To summarize, we have presented a first step towards a statistical theory of multifractal
1D and 2D signals based on wavelet analysis. Indeed we believe that the WTMM method
(and its generalization to 2D), for determining the D(h) singularity spectrum of a fractal
landscape, a turbulent signal or the image of a fractal object, is likely to become as useful
as the well-known phase portrait reconstruction, Poincaré section and first return map
techniques for the analysis of chaotic time series [319, 320]. The reported results of previ-
ous analysis of DNA walks (section 3) and satellite images of fractal clouds (section 5),
together with former wavelet-based statistical studies of fully developed turbulent velocity
signals [32, 35, 36, 94, 102–104, 150, 291] as well as stock market data [151, 152], show that
this method is readily applicable to experimental situations. We have also shown that one
can further use the WT to go beyond this thermodynamic description of fractal objects
and eventually to reveal from the branching structure of the WT skeleton, the existence of
an underlying multiplicative hierarchical structure. As explained in Refs. [32, 36, 156, 321],
in some situations, one can hope solving the “inverse fractal problem” by extracting from
the data some dynamical system which accounts for its internal self-similar structure.
The application of a wavelet-based tree matching algorithm to characterize the fractal
properties of DLA azimutal Cantor sets in Refs. [154–157] has revealed the existence of
a predominant Fibonacci multiplicative process in the apparently disordered arborescent
morphology of diffusion-limited aggregates. This discovery is a spectacular manifestation
of the statistical relevance of the golden mean arithmetic to Laplacian growth phenomena.
As shown in section 6, in some situations, the use of the space-scale correlation func-
tions computed from the WT representation can provide deep insight on the underlying
random cascade structure [86]. Recent applications of this methodology in the context of
fully developed turbulence have revealed the existence of a (non scale-invariant) log-normal
cascading process underlying the turbulent velocity fluctuations [86, 87, 102–104, 150, 291].
More surprising are the results reported in section 6, of a similar investigation of financial
time series [314]. Underlying the fluctuations of the volatility of the price variations, there
exists a causal information cascade from large to small time scales that can be visualized
with the WT representation. We are convinced that further applications of this wavelet
based methodology (WTMM method, wavelet based tree matching algorithm for solving
the inverse fractal problem, space-scale correlation functions) will lead to similar major
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breakthroughs in various fields where multi-scale phenomena are ubiquitous.
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